|
|
|
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import os.path as osp
|
|
|
|
import cv2
|
|
|
|
import copy
|
|
|
|
import random
|
|
|
|
import imghdr
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
try:
|
|
|
|
from collections.abc import Sequence
|
|
|
|
except Exception:
|
|
|
|
from collections import Sequence
|
|
|
|
|
|
|
|
# from paddlers.transforms.operators import Transform
|
|
|
|
|
|
|
|
|
|
|
|
class Transform(object):
|
|
|
|
"""
|
|
|
|
Parent class of all data augmentation operations
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_segm(self, segms):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
if 'gt_bbox' in sample:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'])
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
def __call__(self, sample):
|
|
|
|
if isinstance(sample, Sequence):
|
|
|
|
sample = [self.apply(s) for s in sample]
|
|
|
|
else:
|
|
|
|
sample = self.apply(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class ImgDecode(Transform):
|
|
|
|
"""
|
|
|
|
Decode image(s) in input.
|
|
|
|
Args:
|
|
|
|
to_rgb (bool, optional): If True, convert input images from BGR format to RGB format. Defaults to True.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, to_rgb=True):
|
|
|
|
super(ImgDecode, self).__init__()
|
|
|
|
self.to_rgb = to_rgb
|
|
|
|
|
|
|
|
def read_img(self, img_path, input_channel=3):
|
|
|
|
img_format = imghdr.what(img_path)
|
|
|
|
name, ext = osp.splitext(img_path)
|
|
|
|
if img_format == 'tiff' or ext == '.img':
|
|
|
|
try:
|
|
|
|
import gdal
|
|
|
|
except:
|
|
|
|
try:
|
|
|
|
from osgeo import gdal
|
|
|
|
except:
|
|
|
|
raise Exception(
|
|
|
|
"Failed to import gdal! You can try use conda to install gdal"
|
|
|
|
)
|
|
|
|
six.reraise(*sys.exc_info())
|
|
|
|
|
|
|
|
dataset = gdal.Open(img_path)
|
|
|
|
if dataset == None:
|
|
|
|
raise Exception('Can not open', img_path)
|
|
|
|
im_data = dataset.ReadAsArray()
|
|
|
|
return im_data.transpose((1, 2, 0))
|
|
|
|
elif img_format in ['jpeg', 'bmp', 'png', 'jpg']:
|
|
|
|
if input_channel == 3:
|
|
|
|
return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH |
|
|
|
|
cv2.IMREAD_ANYCOLOR | cv2.IMREAD_COLOR)
|
|
|
|
else:
|
|
|
|
return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH |
|
|
|
|
cv2.IMREAD_ANYCOLOR)
|
|
|
|
elif ext == '.npy':
|
|
|
|
return np.load(img_path)
|
|
|
|
else:
|
|
|
|
raise Exception('Image format {} is not supported!'.format(ext))
|
|
|
|
|
|
|
|
def apply_im(self, im_path):
|
|
|
|
if isinstance(im_path, str):
|
|
|
|
try:
|
|
|
|
image = self.read_img(im_path)
|
|
|
|
except:
|
|
|
|
raise ValueError('Cannot read the image file {}!'.format(
|
|
|
|
im_path))
|
|
|
|
else:
|
|
|
|
image = im_path
|
|
|
|
|
|
|
|
if self.to_rgb:
|
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
try:
|
|
|
|
mask = np.asarray(Image.open(mask))
|
|
|
|
except:
|
|
|
|
raise ValueError("Cannot read the mask file {}!".format(mask))
|
|
|
|
if len(mask.shape) != 2:
|
|
|
|
raise Exception(
|
|
|
|
"Mask should be a 1-channel image, but recevied is a {}-channel image.".
|
|
|
|
format(mask.shape[2]))
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
sample (dict): Input sample, containing 'image' at least.
|
|
|
|
Returns:
|
|
|
|
dict: Decoded sample.
|
|
|
|
"""
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
im_height, im_width, _ = sample['image'].shape
|
|
|
|
se_height, se_width = sample['mask'].shape
|
|
|
|
if im_height != se_height or im_width != se_width:
|
|
|
|
raise Exception(
|
|
|
|
"The height or width of the im is not same as the mask")
|
|
|
|
|
|
|
|
sample['im_shape'] = np.array(
|
|
|
|
sample['image'].shape[:2], dtype=np.float32)
|
|
|
|
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
|
|
|
|
return sample
|