|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
from abc import ABCMeta, abstractmethod
|
|
|
|
from collections import Counter, defaultdict
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import paddlers.utils.logging as logging
|
|
|
|
|
|
|
|
|
|
|
|
class Cache(metaclass=ABCMeta):
|
|
|
|
@abstractmethod
|
|
|
|
def get_block(self, i_st, j_st, h, w):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class SlowCache(Cache):
|
|
|
|
def __init__(self):
|
|
|
|
self.cache = defaultdict(Counter)
|
|
|
|
|
|
|
|
def push_pixel(self, i, j, l):
|
|
|
|
self.cache[(i, j)][l] += 1
|
|
|
|
|
|
|
|
def push_block(self, i_st, j_st, h, w, data):
|
|
|
|
for i in range(0, h):
|
|
|
|
for j in range(0, w):
|
|
|
|
self.push_pixel(i_st + i, j_st + j, data[i, j])
|
|
|
|
|
|
|
|
def pop_pixel(self, i, j):
|
|
|
|
self.cache.pop((i, j))
|
|
|
|
|
|
|
|
def pop_block(self, i_st, j_st, h, w):
|
|
|
|
for i in range(0, h):
|
|
|
|
for j in range(0, w):
|
|
|
|
self.pop_pixel(i_st + i, j_st + j)
|
|
|
|
|
|
|
|
def get_pixel(self, i, j):
|
|
|
|
winners = self.cache[(i, j)].most_common(1)
|
|
|
|
winner = winners[0]
|
|
|
|
return winner[0]
|
|
|
|
|
|
|
|
def get_block(self, i_st, j_st, h, w):
|
|
|
|
block = []
|
|
|
|
for i in range(i_st, i_st + h):
|
|
|
|
row = []
|
|
|
|
for j in range(j_st, j_st + w):
|
|
|
|
row.append(self.get_pixel(i, j))
|
|
|
|
block.append(row)
|
|
|
|
return np.asarray(block)
|
|
|
|
|
|
|
|
|
|
|
|
class ProbCache(Cache):
|
|
|
|
def __init__(self, h, w, ch, cw, sh, sw, dtype=np.float32, order='c'):
|
|
|
|
self.cache = None
|
|
|
|
self.h = h
|
|
|
|
self.w = w
|
|
|
|
self.ch = ch
|
|
|
|
self.cw = cw
|
|
|
|
self.sh = sh
|
|
|
|
self.sw = sw
|
|
|
|
if not issubclass(dtype, np.floating):
|
|
|
|
raise TypeError("`dtype` must be one of the floating types.")
|
|
|
|
self.dtype = dtype
|
|
|
|
order = order.lower()
|
|
|
|
if order not in ('c', 'f'):
|
|
|
|
raise ValueError("`order` other than 'c' and 'f' is not supported.")
|
|
|
|
self.order = order
|
|
|
|
|
|
|
|
def _alloc_memory(self, nc):
|
|
|
|
if self.order == 'c':
|
|
|
|
# Colomn-first order (C-style)
|
|
|
|
#
|
|
|
|
# <-- cw -->
|
|
|
|
# |--------|---------------------|^ ^
|
|
|
|
# | || | sh
|
|
|
|
# |--------|---------------------|| ch v
|
|
|
|
# | ||
|
|
|
|
# |--------|---------------------|v
|
|
|
|
# <------------ w --------------->
|
|
|
|
self.cache = np.zeros((self.ch, self.w, nc), dtype=self.dtype)
|
|
|
|
elif self.order == 'f':
|
|
|
|
# Row-first order (Fortran-style)
|
|
|
|
#
|
|
|
|
# <-- sw -->
|
|
|
|
# <---- cw ---->
|
|
|
|
# |--------|---|^ ^
|
|
|
|
# | | || |
|
|
|
|
# | | || ch
|
|
|
|
# | | || |
|
|
|
|
# |--------|---|| h v
|
|
|
|
# | | ||
|
|
|
|
# | | ||
|
|
|
|
# | | ||
|
|
|
|
# |--------|---|v
|
|
|
|
self.cache = np.zeros((self.h, self.cw, nc), dtype=self.dtype)
|
|
|
|
|
|
|
|
def update_block(self, i_st, j_st, h, w, prob_map):
|
|
|
|
if self.cache is None:
|
|
|
|
nc = prob_map.shape[2]
|
|
|
|
# Lazy allocation of memory
|
|
|
|
self._alloc_memory(nc)
|
|
|
|
self.cache[i_st:i_st + h, j_st:j_st + w] += prob_map
|
|
|
|
|
|
|
|
def roll_cache(self):
|
|
|
|
if self.order == 'c':
|
|
|
|
self.cache = np.roll(self.cache, -self.sh, axis=0)
|
|
|
|
self.cache[-self.sh:, :] = 0
|
|
|
|
elif self.order == 'f':
|
|
|
|
self.cache = np.roll(self.cache, -self.sw, axis=1)
|
|
|
|
self.cache[:, -self.sw:] = 0
|
|
|
|
|
|
|
|
def get_block(self, i_st, j_st, h, w):
|
|
|
|
return np.argmax(self.cache[i_st:i_st + h, j_st:j_st + w], axis=2)
|
|
|
|
|
|
|
|
|
|
|
|
def slider_predict(predict_func, img_file, save_dir, block_size, overlap,
|
|
|
|
transforms, invalid_value, merge_strategy):
|
|
|
|
"""
|
|
|
|
Do inference using sliding windows.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
predict_func (callable): A callable object that makes the prediction.
|
|
|
|
img_file (str|tuple[str]): Image path(s).
|
|
|
|
save_dir (str): Directory that contains saved geotiff file.
|
|
|
|
block_size (list[int] | tuple[int] | int):
|
|
|
|
Size of block. If `block_size` is list or tuple, it should be in
|
|
|
|
(W, H) format.
|
|
|
|
overlap (list[int] | tuple[int] | int):
|
|
|
|
Overlap between two blocks. If `overlap` is list or tuple, it should
|
|
|
|
be in (W, H) format.
|
|
|
|
transforms (paddlers.transforms.Compose|None): Transforms for inputs. If
|
|
|
|
None, the transforms for evaluation process will be used.
|
|
|
|
invalid_value (int): Value that marks invalid pixels in output image.
|
|
|
|
Defaults to 255.
|
|
|
|
merge_strategy (str): Strategy to merge overlapping blocks. Choices are
|
|
|
|
{'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last'
|
|
|
|
means keeping the values of the first and the last block in
|
|
|
|
traversal order, respectively. 'accum' means determining the class
|
|
|
|
of an overlapping pixel according to accumulated probabilities.
|
|
|
|
"""
|
|
|
|
|
|
|
|
try:
|
|
|
|
from osgeo import gdal
|
|
|
|
except:
|
|
|
|
import gdal
|
|
|
|
|
|
|
|
if isinstance(block_size, int):
|
|
|
|
block_size = (block_size, block_size)
|
|
|
|
elif isinstance(block_size, (tuple, list)) and len(block_size) == 2:
|
|
|
|
block_size = tuple(block_size)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"`block_size` must be a tuple/list of length 2 or an integer.")
|
|
|
|
if isinstance(overlap, int):
|
|
|
|
overlap = (overlap, overlap)
|
|
|
|
elif isinstance(overlap, (tuple, list)) and len(overlap) == 2:
|
|
|
|
overlap = tuple(overlap)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"`overlap` must be a tuple/list of length 2 or an integer.")
|
|
|
|
|
|
|
|
if merge_strategy not in ('keep_first', 'keep_last', 'accum'):
|
|
|
|
raise ValueError("{} is not a supported stragegy for block merging.".
|
|
|
|
format(merge_strategy))
|
|
|
|
|
|
|
|
step = np.array(
|
|
|
|
block_size, dtype=np.int32) - np.array(
|
|
|
|
overlap, dtype=np.int32)
|
|
|
|
if step[0] == 0 or step[1] == 0:
|
|
|
|
raise ValueError("`block_size` and `overlap` should not be equal.")
|
|
|
|
|
|
|
|
if isinstance(img_file, tuple):
|
|
|
|
if len(img_file) != 2:
|
|
|
|
raise ValueError("Tuple `img_file` must have the length of two.")
|
|
|
|
# Assume that two input images have the same size
|
|
|
|
src_data = gdal.Open(img_file[0])
|
|
|
|
src2_data = gdal.Open(img_file[1])
|
|
|
|
# Output name is the same as the name of the first image
|
|
|
|
file_name = osp.basename(osp.normpath(img_file[0]))
|
|
|
|
else:
|
|
|
|
src_data = gdal.Open(img_file)
|
|
|
|
file_name = osp.basename(osp.normpath(img_file))
|
|
|
|
|
|
|
|
# Get size of original raster
|
|
|
|
width = src_data.RasterXSize
|
|
|
|
height = src_data.RasterYSize
|
|
|
|
bands = src_data.RasterCount
|
|
|
|
|
|
|
|
if block_size[0] > width or block_size[1] > height:
|
|
|
|
raise ValueError("`block_size` should not be larger than image size.")
|
|
|
|
|
|
|
|
driver = gdal.GetDriverByName("GTiff")
|
|
|
|
if not osp.exists(save_dir):
|
|
|
|
os.makedirs(save_dir)
|
|
|
|
# Replace extension name with '.tif'
|
|
|
|
file_name = osp.splitext(file_name)[0] + ".tif"
|
|
|
|
save_file = osp.join(save_dir, file_name)
|
|
|
|
dst_data = driver.Create(save_file, width, height, 1, gdal.GDT_Byte)
|
|
|
|
|
|
|
|
# Set meta-information
|
|
|
|
dst_data.SetGeoTransform(src_data.GetGeoTransform())
|
|
|
|
dst_data.SetProjection(src_data.GetProjection())
|
|
|
|
|
|
|
|
# Initialize raster with `invalid_value`
|
|
|
|
band = dst_data.GetRasterBand(1)
|
|
|
|
band.WriteArray(
|
|
|
|
np.full(
|
|
|
|
(height, width), fill_value=invalid_value, dtype="uint8"))
|
|
|
|
|
|
|
|
if overlap == (0, 0) or block_size == (width, height):
|
|
|
|
# When there is no overlap or the whole image is used as input,
|
|
|
|
# use 'keep_last' strategy as it introduces least overheads
|
|
|
|
merge_strategy = 'keep_last'
|
|
|
|
if merge_strategy == 'accum':
|
|
|
|
cache = ProbCache(height, width, *block_size[::-1], *step[::-1])
|
|
|
|
|
|
|
|
for yoff in range(0, height, step[1]):
|
|
|
|
for xoff in range(0, width, step[0]):
|
|
|
|
xsize, ysize = block_size
|
|
|
|
if xoff + xsize > width:
|
|
|
|
xoff = width - xsize
|
|
|
|
if yoff + ysize > height:
|
|
|
|
yoff = height - ysize
|
|
|
|
|
|
|
|
# Read and fill
|
|
|
|
im = src_data.ReadAsArray(xoff, yoff, xsize, ysize).transpose(
|
|
|
|
(1, 2, 0))
|
|
|
|
|
|
|
|
if isinstance(img_file, tuple):
|
|
|
|
im2 = src2_data.ReadAsArray(xoff, yoff, xsize, ysize).transpose(
|
|
|
|
(1, 2, 0))
|
|
|
|
# Predict
|
|
|
|
out = predict_func((im, im2), transforms=transforms)
|
|
|
|
else:
|
|
|
|
# Predict
|
|
|
|
out = predict_func(im, transforms=transforms)
|
|
|
|
|
|
|
|
pred = out['label_map'].astype('uint8')
|
|
|
|
pred = pred[:ysize, :xsize]
|
|
|
|
|
|
|
|
# Deal with overlapping pixels
|
|
|
|
if merge_strategy == 'keep_first':
|
|
|
|
rd_block = band.ReadAsArray(xoff, yoff, xsize, ysize)
|
|
|
|
mask = rd_block != invalid_value
|
|
|
|
pred = np.where(mask, rd_block, pred)
|
|
|
|
elif merge_strategy == 'keep_last':
|
|
|
|
pass
|
|
|
|
elif merge_strategy == 'accum':
|
|
|
|
prob = out['score_map']
|
|
|
|
prob = prob[:ysize, :xsize]
|
|
|
|
cache.update_block(0, xoff, ysize, xsize, prob)
|
|
|
|
pred = cache.get_block(0, xoff, ysize, xsize)
|
|
|
|
if xoff + xsize >= width:
|
|
|
|
cache.roll_cache()
|
|
|
|
|
|
|
|
# Write to file
|
|
|
|
band.WriteArray(pred, xoff, yoff)
|
|
|
|
dst_data.FlushCache()
|
|
|
|
|
|
|
|
dst_data = None
|
|
|
|
logging.info("GeoTiff file saved in {}.".format(save_file))
|