|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import paddle
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
|
|
import paddlers
|
|
|
|
import paddlers.models.ppgan as ppgan
|
|
|
|
import paddlers.rs_models.res as cmres
|
|
|
|
import paddlers.models.ppgan.metrics as metrics
|
|
|
|
import paddlers.utils.logging as logging
|
|
|
|
from paddlers.models import res_losses
|
|
|
|
from paddlers.transforms import Resize, decode_image
|
|
|
|
from paddlers.transforms.functions import calc_hr_shape
|
|
|
|
from paddlers.utils import get_single_card_bs
|
|
|
|
from paddlers.utils.checkpoint import res_pretrain_weights_dict
|
|
|
|
from .base import BaseModel
|
|
|
|
from .utils.res_adapters import GANAdapter, OptimizerAdapter
|
|
|
|
from .utils.infer_nets import InferResNet
|
|
|
|
|
|
|
|
__all__ = ["DRN", "LESRCNN", "ESRGAN"]
|
|
|
|
|
|
|
|
|
|
|
|
class BaseRestorer(BaseModel):
|
|
|
|
MIN_MAX = (0., 1.)
|
|
|
|
TEST_OUT_KEY = None
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
model_name,
|
|
|
|
losses=None,
|
|
|
|
sr_factor=None,
|
|
|
|
min_max=None,
|
|
|
|
**params):
|
|
|
|
self.init_params = locals()
|
|
|
|
if 'with_net' in self.init_params:
|
|
|
|
del self.init_params['with_net']
|
|
|
|
super(BaseRestorer, self).__init__('restorer')
|
|
|
|
self.model_name = model_name
|
|
|
|
self.losses = losses
|
|
|
|
self.sr_factor = sr_factor
|
|
|
|
if params.get('with_net', True):
|
|
|
|
params.pop('with_net', None)
|
|
|
|
self.net = self.build_net(**params)
|
|
|
|
self.find_unused_parameters = True
|
|
|
|
if min_max is None:
|
|
|
|
self.min_max = self.MIN_MAX
|
|
|
|
|
|
|
|
def build_net(self, **params):
|
|
|
|
# Currently, only use models from cmres.
|
|
|
|
if not hasattr(cmres, self.model_name):
|
|
|
|
raise ValueError("ERROR: There is no model named {}.".format(
|
|
|
|
model_name))
|
|
|
|
net = dict(**cmres.__dict__)[self.model_name](**params)
|
|
|
|
return net
|
|
|
|
|
|
|
|
def _build_inference_net(self):
|
|
|
|
# For GAN models, only the generator will be used for inference.
|
|
|
|
if isinstance(self.net, GANAdapter):
|
|
|
|
infer_net = InferResNet(
|
|
|
|
self.net.generator, out_key=self.TEST_OUT_KEY)
|
|
|
|
else:
|
|
|
|
infer_net = InferResNet(self.net, out_key=self.TEST_OUT_KEY)
|
|
|
|
infer_net.eval()
|
|
|
|
return infer_net
|
|
|
|
|
|
|
|
def _fix_transforms_shape(self, image_shape):
|
|
|
|
if hasattr(self, 'test_transforms'):
|
|
|
|
if self.test_transforms is not None:
|
|
|
|
has_resize_op = False
|
|
|
|
resize_op_idx = -1
|
|
|
|
normalize_op_idx = len(self.test_transforms.transforms)
|
|
|
|
for idx, op in enumerate(self.test_transforms.transforms):
|
|
|
|
name = op.__class__.__name__
|
|
|
|
if name == 'Normalize':
|
|
|
|
normalize_op_idx = idx
|
|
|
|
if 'Resize' in name:
|
|
|
|
has_resize_op = True
|
|
|
|
resize_op_idx = idx
|
|
|
|
|
|
|
|
if not has_resize_op:
|
|
|
|
self.test_transforms.transforms.insert(
|
|
|
|
normalize_op_idx, Resize(target_size=image_shape))
|
|
|
|
else:
|
|
|
|
self.test_transforms.transforms[resize_op_idx] = Resize(
|
|
|
|
target_size=image_shape)
|
|
|
|
|
|
|
|
def _get_test_inputs(self, image_shape):
|
|
|
|
if image_shape is not None:
|
|
|
|
if len(image_shape) == 2:
|
|
|
|
image_shape = [1, 3] + image_shape
|
|
|
|
self._fix_transforms_shape(image_shape[-2:])
|
|
|
|
else:
|
|
|
|
image_shape = [None, 3, -1, -1]
|
|
|
|
self.fixed_input_shape = image_shape
|
|
|
|
input_spec = [
|
|
|
|
InputSpec(
|
|
|
|
shape=image_shape, name='image', dtype='float32')
|
|
|
|
]
|
|
|
|
return input_spec
|
|
|
|
|
|
|
|
def run(self, net, inputs, mode):
|
|
|
|
outputs = OrderedDict()
|
|
|
|
|
|
|
|
if mode == 'test':
|
|
|
|
tar_shape = inputs[1]
|
|
|
|
if self.status == 'Infer':
|
|
|
|
net_out = net(inputs[0])
|
|
|
|
res_map_list = self.postprocess(
|
|
|
|
net_out, tar_shape, transforms=inputs[2])
|
|
|
|
else:
|
|
|
|
if isinstance(net, GANAdapter):
|
|
|
|
net_out = net.generator(inputs[0])
|
|
|
|
else:
|
|
|
|
net_out = net(inputs[0])
|
|
|
|
if self.TEST_OUT_KEY is not None:
|
|
|
|
net_out = net_out[self.TEST_OUT_KEY]
|
|
|
|
pred = self.postprocess(
|
|
|
|
net_out, tar_shape, transforms=inputs[2])
|
|
|
|
res_map_list = []
|
|
|
|
for res_map in pred:
|
|
|
|
res_map = self._tensor_to_images(res_map)
|
|
|
|
res_map_list.append(res_map)
|
|
|
|
outputs['res_map'] = res_map_list
|
|
|
|
|
|
|
|
if mode == 'eval':
|
|
|
|
if isinstance(net, GANAdapter):
|
|
|
|
net_out = net.generator(inputs[0])
|
|
|
|
else:
|
|
|
|
net_out = net(inputs[0])
|
|
|
|
if self.TEST_OUT_KEY is not None:
|
|
|
|
net_out = net_out[self.TEST_OUT_KEY]
|
|
|
|
tar = inputs[1]
|
|
|
|
tar_shape = [tar.shape[-2:]]
|
|
|
|
pred = self.postprocess(
|
|
|
|
net_out, tar_shape, transforms=inputs[2])[0] # NCHW
|
|
|
|
pred = self._tensor_to_images(pred)
|
|
|
|
outputs['pred'] = pred
|
|
|
|
tar = self._tensor_to_images(tar)
|
|
|
|
outputs['tar'] = tar
|
|
|
|
|
|
|
|
if mode == 'train':
|
|
|
|
# This is used by non-GAN models.
|
|
|
|
# For GAN models, self.run_gan() should be used.
|
|
|
|
net_out = net(inputs[0])
|
|
|
|
loss = self.losses(net_out, inputs[1])
|
|
|
|
outputs['loss'] = loss
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def run_gan(self, net, inputs, mode, gan_mode):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
return res_losses.L1Loss()
|
|
|
|
|
|
|
|
def default_optimizer(self,
|
|
|
|
parameters,
|
|
|
|
learning_rate,
|
|
|
|
num_epochs,
|
|
|
|
num_steps_each_epoch,
|
|
|
|
lr_decay_power=0.9):
|
|
|
|
decay_step = num_epochs * num_steps_each_epoch
|
|
|
|
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
|
|
|
|
learning_rate, decay_step, end_lr=0, power=lr_decay_power)
|
|
|
|
optimizer = paddle.optimizer.Momentum(
|
|
|
|
learning_rate=lr_scheduler,
|
|
|
|
parameters=parameters,
|
|
|
|
momentum=0.9,
|
|
|
|
weight_decay=4e-5)
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
def train(self,
|
|
|
|
num_epochs,
|
|
|
|
train_dataset,
|
|
|
|
train_batch_size=2,
|
|
|
|
eval_dataset=None,
|
|
|
|
optimizer=None,
|
|
|
|
save_interval_epochs=1,
|
|
|
|
log_interval_steps=2,
|
|
|
|
save_dir='output',
|
|
|
|
pretrain_weights=None,
|
|
|
|
learning_rate=0.01,
|
|
|
|
lr_decay_power=0.9,
|
|
|
|
early_stop=False,
|
|
|
|
early_stop_patience=5,
|
|
|
|
use_vdl=True,
|
|
|
|
resume_checkpoint=None):
|
|
|
|
"""
|
|
|
|
Train the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_epochs (int): Number of epochs.
|
|
|
|
train_dataset (paddlers.datasets.ResDataset): Training dataset.
|
|
|
|
train_batch_size (int, optional): Total batch size among all cards used in
|
|
|
|
training. Defaults to 2.
|
|
|
|
eval_dataset (paddlers.datasets.ResDataset|None, optional): Evaluation dataset.
|
|
|
|
If None, the model will not be evaluated during training process.
|
|
|
|
Defaults to None.
|
|
|
|
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
|
|
|
|
training. If None, a default optimizer will be used. Defaults to None.
|
|
|
|
save_interval_epochs (int, optional): Epoch interval for saving the model.
|
|
|
|
Defaults to 1.
|
|
|
|
log_interval_steps (int, optional): Step interval for printing training
|
|
|
|
information. Defaults to 2.
|
|
|
|
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
|
pretrain_weights (str|None, optional): None or name/path of pretrained
|
|
|
|
weights. If None, no pretrained weights will be loaded.
|
|
|
|
Defaults to None.
|
|
|
|
learning_rate (float, optional): Learning rate for training. Defaults to .01.
|
|
|
|
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
|
|
|
|
early_stop (bool, optional): Whether to adopt early stop strategy. Defaults
|
|
|
|
to False.
|
|
|
|
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
|
|
|
|
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
|
|
|
|
process. Defaults to True.
|
|
|
|
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
|
|
|
|
training from. If None, no training checkpoint will be resumed. At most
|
|
|
|
Aone of `resume_checkpoint` and `pretrain_weights` can be set simultaneously.
|
|
|
|
Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if self.status == 'Infer':
|
|
|
|
logging.error(
|
|
|
|
"Exported inference model does not support training.",
|
|
|
|
exit=True)
|
|
|
|
if pretrain_weights is not None and resume_checkpoint is not None:
|
|
|
|
logging.error(
|
|
|
|
"`pretrain_weights` and `resume_checkpoint` cannot be set simultaneously.",
|
|
|
|
exit=True)
|
|
|
|
|
|
|
|
if self.losses is None:
|
|
|
|
self.losses = self.default_loss()
|
|
|
|
|
|
|
|
if optimizer is None:
|
|
|
|
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
|
|
|
|
if isinstance(self.net, GANAdapter):
|
|
|
|
parameters = {'params_g': [], 'params_d': []}
|
|
|
|
for net_g in self.net.generators:
|
|
|
|
parameters['params_g'].append(net_g.parameters())
|
|
|
|
for net_d in self.net.discriminators:
|
|
|
|
parameters['params_d'].append(net_d.parameters())
|
|
|
|
else:
|
|
|
|
parameters = self.net.parameters()
|
|
|
|
self.optimizer = self.default_optimizer(
|
|
|
|
parameters, learning_rate, num_epochs, num_steps_each_epoch,
|
|
|
|
lr_decay_power)
|
|
|
|
else:
|
|
|
|
self.optimizer = optimizer
|
|
|
|
|
|
|
|
if pretrain_weights is not None:
|
|
|
|
if not osp.exists(pretrain_weights):
|
|
|
|
if self.model_name not in res_pretrain_weights_dict:
|
|
|
|
logging.warning(
|
|
|
|
"Path of pretrained weights ('{}') does not exist!".
|
|
|
|
format(pretrain_weights))
|
|
|
|
pretrain_weights = None
|
|
|
|
elif pretrain_weights not in res_pretrain_weights_dict[
|
|
|
|
self.model_name]:
|
|
|
|
logging.warning(
|
|
|
|
"Path of pretrained weights ('{}') does not exist!".
|
|
|
|
format(pretrain_weights))
|
|
|
|
pretrain_weights = res_pretrain_weights_dict[
|
|
|
|
self.model_name][0]
|
|
|
|
logging.warning(
|
|
|
|
"`pretrain_weights` is forcibly set to '{}'. "
|
|
|
|
"If you don't want to use pretrained weights, "
|
|
|
|
"please set `pretrain_weights` to None.".format(
|
|
|
|
pretrain_weights))
|
|
|
|
else:
|
|
|
|
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
|
|
|
|
logging.error(
|
|
|
|
"Invalid pretrained weights. Please specify a .pdparams file.",
|
|
|
|
exit=True)
|
|
|
|
pretrained_dir = osp.join(save_dir, 'pretrain')
|
|
|
|
is_backbone_weights = pretrain_weights == 'IMAGENET'
|
|
|
|
# XXX: Currently, do not load optimizer state dict.
|
|
|
|
self.initialize_net(
|
|
|
|
pretrain_weights=pretrain_weights,
|
|
|
|
save_dir=pretrained_dir,
|
|
|
|
resume_checkpoint=resume_checkpoint,
|
|
|
|
is_backbone_weights=is_backbone_weights,
|
|
|
|
load_optim_state=False)
|
|
|
|
|
|
|
|
self.train_loop(
|
|
|
|
num_epochs=num_epochs,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=train_batch_size,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
save_interval_epochs=save_interval_epochs,
|
|
|
|
log_interval_steps=log_interval_steps,
|
|
|
|
save_dir=save_dir,
|
|
|
|
early_stop=early_stop,
|
|
|
|
early_stop_patience=early_stop_patience,
|
|
|
|
use_vdl=use_vdl)
|
|
|
|
|
|
|
|
def quant_aware_train(self,
|
|
|
|
num_epochs,
|
|
|
|
train_dataset,
|
|
|
|
train_batch_size=2,
|
|
|
|
eval_dataset=None,
|
|
|
|
optimizer=None,
|
|
|
|
save_interval_epochs=1,
|
|
|
|
log_interval_steps=2,
|
|
|
|
save_dir='output',
|
|
|
|
learning_rate=0.0001,
|
|
|
|
lr_decay_power=0.9,
|
|
|
|
early_stop=False,
|
|
|
|
early_stop_patience=5,
|
|
|
|
use_vdl=True,
|
|
|
|
resume_checkpoint=None,
|
|
|
|
quant_config=None):
|
|
|
|
"""
|
|
|
|
Quantization-aware training.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_epochs (int): Number of epochs.
|
|
|
|
train_dataset (paddlers.datasets.ResDataset): Training dataset.
|
|
|
|
train_batch_size (int, optional): Total batch size among all cards used in
|
|
|
|
training. Defaults to 2.
|
|
|
|
eval_dataset (paddlers.datasets.ResDataset|None, optional): Evaluation dataset.
|
|
|
|
If None, the model will not be evaluated during training process.
|
|
|
|
Defaults to None.
|
|
|
|
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
|
|
|
|
training. If None, a default optimizer will be used. Defaults to None.
|
|
|
|
save_interval_epochs (int, optional): Epoch interval for saving the model.
|
|
|
|
Defaults to 1.
|
|
|
|
log_interval_steps (int, optional): Step interval for printing training
|
|
|
|
information. Defaults to 2.
|
|
|
|
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
|
learning_rate (float, optional): Learning rate for training.
|
|
|
|
Defaults to .0001.
|
|
|
|
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
|
|
|
|
early_stop (bool, optional): Whether to adopt early stop strategy.
|
|
|
|
Defaults to False.
|
|
|
|
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
|
|
|
|
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
|
|
|
|
process. Defaults to True.
|
|
|
|
quant_config (dict|None, optional): Quantization configuration. If None,
|
|
|
|
a default rule of thumb configuration will be used. Defaults to None.
|
|
|
|
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
|
|
|
|
quantization-aware training from. If None, no training checkpoint will
|
|
|
|
be resumed. Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
self._prepare_qat(quant_config)
|
|
|
|
self.train(
|
|
|
|
num_epochs=num_epochs,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=train_batch_size,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
optimizer=optimizer,
|
|
|
|
save_interval_epochs=save_interval_epochs,
|
|
|
|
log_interval_steps=log_interval_steps,
|
|
|
|
save_dir=save_dir,
|
|
|
|
pretrain_weights=None,
|
|
|
|
learning_rate=learning_rate,
|
|
|
|
lr_decay_power=lr_decay_power,
|
|
|
|
early_stop=early_stop,
|
|
|
|
early_stop_patience=early_stop_patience,
|
|
|
|
use_vdl=use_vdl,
|
|
|
|
resume_checkpoint=resume_checkpoint)
|
|
|
|
|
|
|
|
def evaluate(self, eval_dataset, batch_size=1, return_details=False):
|
|
|
|
"""
|
|
|
|
Evaluate the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
eval_dataset (paddlers.datasets.ResDataset): Evaluation dataset.
|
|
|
|
batch_size (int, optional): Total batch size among all cards used for
|
|
|
|
evaluation. Defaults to 1.
|
|
|
|
return_details (bool, optional): Whether to return evaluation details.
|
|
|
|
Defaults to False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
If `return_details` is False, return collections.OrderedDict with
|
|
|
|
key-value pairs:
|
|
|
|
{"psnr": peak signal-to-noise ratio,
|
|
|
|
"ssim": structural similarity}.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
self._check_transforms(eval_dataset.transforms, 'eval')
|
|
|
|
|
|
|
|
self.net.eval()
|
|
|
|
nranks = paddle.distributed.get_world_size()
|
|
|
|
local_rank = paddle.distributed.get_rank()
|
|
|
|
if nranks > 1:
|
|
|
|
# Initialize parallel environment if not done.
|
|
|
|
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
|
|
|
|
):
|
|
|
|
paddle.distributed.init_parallel_env()
|
|
|
|
|
|
|
|
# TODO: Distributed evaluation
|
|
|
|
if batch_size > 1:
|
|
|
|
logging.warning(
|
|
|
|
"Restorer only supports single card evaluation with batch_size=1 "
|
|
|
|
"during evaluation, so batch_size is forcibly set to 1.")
|
|
|
|
batch_size = 1
|
|
|
|
|
|
|
|
if nranks < 2 or local_rank == 0:
|
|
|
|
self.eval_data_loader = self.build_data_loader(
|
|
|
|
eval_dataset, batch_size=batch_size, mode='eval')
|
|
|
|
# XXX: Hard-code crop_border and test_y_channel
|
|
|
|
psnr = metrics.PSNR(crop_border=4, test_y_channel=True)
|
|
|
|
ssim = metrics.SSIM(crop_border=4, test_y_channel=True)
|
|
|
|
logging.info(
|
|
|
|
"Start to evaluate(total_samples={}, total_steps={})...".format(
|
|
|
|
eval_dataset.num_samples, eval_dataset.num_samples))
|
|
|
|
with paddle.no_grad():
|
|
|
|
for step, data in enumerate(self.eval_data_loader):
|
|
|
|
data.append(eval_dataset.transforms.transforms)
|
|
|
|
outputs = self.run(self.net, data, 'eval')
|
|
|
|
psnr.update(outputs['pred'], outputs['tar'])
|
|
|
|
ssim.update(outputs['pred'], outputs['tar'])
|
|
|
|
|
|
|
|
# DO NOT use psnr.accumulate() here, otherwise the program hangs in multi-card training.
|
|
|
|
assert len(psnr.results) > 0
|
|
|
|
assert len(ssim.results) > 0
|
|
|
|
eval_metrics = OrderedDict(
|
|
|
|
zip(['psnr', 'ssim'],
|
|
|
|
[np.mean(psnr.results), np.mean(ssim.results)]))
|
|
|
|
|
|
|
|
if return_details:
|
|
|
|
# TODO: Add details
|
|
|
|
return eval_metrics, None
|
|
|
|
|
|
|
|
return eval_metrics
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
def predict(self, img_file, transforms=None):
|
|
|
|
"""
|
|
|
|
Do inference.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img_file (list[np.ndarray|str] | str | np.ndarray): Image path or decoded
|
|
|
|
image data, which also could constitute a list, meaning all images to be
|
|
|
|
predicted as a mini-batch.
|
|
|
|
transforms (paddlers.transforms.Compose|None, optional): Transforms for
|
|
|
|
inputs. If None, the transforms for evaluation process will be used.
|
|
|
|
Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
If `img_file` is a tuple of string or np.array, the result is a dict with
|
|
|
|
the following key-value pairs:
|
|
|
|
res_map (np.ndarray): Restored image (HWC).
|
|
|
|
|
|
|
|
If `img_file` is a list, the result is a list composed of dicts with the
|
|
|
|
above keys.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if transforms is None and not hasattr(self, 'test_transforms'):
|
|
|
|
raise ValueError("transforms need to be defined, now is None.")
|
|
|
|
if transforms is None:
|
|
|
|
transforms = self.test_transforms
|
|
|
|
if isinstance(img_file, (str, np.ndarray)):
|
|
|
|
images = [img_file]
|
|
|
|
else:
|
|
|
|
images = img_file
|
|
|
|
batch_im, batch_tar_shape = self.preprocess(images, transforms,
|
|
|
|
self.model_type)
|
|
|
|
self.net.eval()
|
|
|
|
data = (batch_im, batch_tar_shape, transforms.transforms)
|
|
|
|
outputs = self.run(self.net, data, 'test')
|
|
|
|
res_map_list = outputs['res_map']
|
|
|
|
if isinstance(img_file, list):
|
|
|
|
prediction = [{'res_map': m} for m in res_map_list]
|
|
|
|
else:
|
|
|
|
prediction = {'res_map': res_map_list[0]}
|
|
|
|
return prediction
|
|
|
|
|
|
|
|
def preprocess(self, images, transforms, to_tensor=True):
|
|
|
|
self._check_transforms(transforms, 'test')
|
|
|
|
batch_im = list()
|
|
|
|
batch_tar_shape = list()
|
|
|
|
for im in images:
|
|
|
|
if isinstance(im, str):
|
|
|
|
im = decode_image(im, read_raw=True)
|
|
|
|
ori_shape = im.shape[:2]
|
|
|
|
sample = {'image': im}
|
|
|
|
im = transforms(sample)[0]
|
|
|
|
batch_im.append(im)
|
|
|
|
batch_tar_shape.append(self._get_target_shape(ori_shape))
|
|
|
|
if to_tensor:
|
|
|
|
batch_im = paddle.to_tensor(batch_im)
|
|
|
|
else:
|
|
|
|
batch_im = np.asarray(batch_im)
|
|
|
|
|
|
|
|
return batch_im, batch_tar_shape
|
|
|
|
|
|
|
|
def _get_target_shape(self, ori_shape):
|
|
|
|
if self.sr_factor is None:
|
|
|
|
return ori_shape
|
|
|
|
else:
|
|
|
|
return calc_hr_shape(ori_shape, self.sr_factor)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_transforms_shape_info(batch_tar_shape, transforms):
|
|
|
|
batch_restore_list = list()
|
|
|
|
for tar_shape in batch_tar_shape:
|
|
|
|
restore_list = list()
|
|
|
|
h, w = tar_shape[0], tar_shape[1]
|
|
|
|
for op in transforms:
|
|
|
|
if op.__class__.__name__ == 'Resize':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
h, w = op.target_size
|
|
|
|
elif op.__class__.__name__ == 'ResizeByShort':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
im_short_size = min(h, w)
|
|
|
|
im_long_size = max(h, w)
|
|
|
|
scale = float(op.short_size) / float(im_short_size)
|
|
|
|
if 0 < op.max_size < np.round(scale * im_long_size):
|
|
|
|
scale = float(op.max_size) / float(im_long_size)
|
|
|
|
h = int(round(h * scale))
|
|
|
|
w = int(round(w * scale))
|
|
|
|
elif op.__class__.__name__ == 'ResizeByLong':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
im_long_size = max(h, w)
|
|
|
|
scale = float(op.long_size) / float(im_long_size)
|
|
|
|
h = int(round(h * scale))
|
|
|
|
w = int(round(w * scale))
|
|
|
|
elif op.__class__.__name__ == 'Pad':
|
|
|
|
if op.target_size:
|
|
|
|
target_h, target_w = op.target_size
|
|
|
|
else:
|
|
|
|
target_h = int(
|
|
|
|
(np.ceil(h / op.size_divisor) * op.size_divisor))
|
|
|
|
target_w = int(
|
|
|
|
(np.ceil(w / op.size_divisor) * op.size_divisor))
|
|
|
|
|
|
|
|
if op.pad_mode == -1:
|
|
|
|
offsets = op.offsets
|
|
|
|
elif op.pad_mode == 0:
|
|
|
|
offsets = [0, 0]
|
|
|
|
elif op.pad_mode == 1:
|
|
|
|
offsets = [(target_h - h) // 2, (target_w - w) // 2]
|
|
|
|
else:
|
|
|
|
offsets = [target_h - h, target_w - w]
|
|
|
|
restore_list.append(('padding', (h, w), offsets))
|
|
|
|
h, w = target_h, target_w
|
|
|
|
|
|
|
|
batch_restore_list.append(restore_list)
|
|
|
|
return batch_restore_list
|
|
|
|
|
|
|
|
def postprocess(self, batch_pred, batch_tar_shape, transforms):
|
|
|
|
batch_restore_list = BaseRestorer.get_transforms_shape_info(
|
|
|
|
batch_tar_shape, transforms)
|
|
|
|
if self.status == 'Infer':
|
|
|
|
return self._infer_postprocess(
|
|
|
|
batch_res_map=batch_pred, batch_restore_list=batch_restore_list)
|
|
|
|
results = []
|
|
|
|
if batch_pred.dtype == paddle.float32:
|
|
|
|
mode = 'bilinear'
|
|
|
|
else:
|
|
|
|
mode = 'nearest'
|
|
|
|
for pred, restore_list in zip(batch_pred, batch_restore_list):
|
|
|
|
pred = paddle.unsqueeze(pred, axis=0)
|
|
|
|
for item in restore_list[::-1]:
|
|
|
|
h, w = item[1][0], item[1][1]
|
|
|
|
if item[0] == 'resize':
|
|
|
|
pred = F.interpolate(
|
|
|
|
pred, (h, w), mode=mode, data_format='NCHW')
|
|
|
|
elif item[0] == 'padding':
|
|
|
|
x, y = item[2]
|
|
|
|
pred = pred[:, :, y:y + h, x:x + w]
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
results.append(pred)
|
|
|
|
return results
|
|
|
|
|
|
|
|
def _infer_postprocess(self, batch_res_map, batch_restore_list):
|
|
|
|
res_maps = []
|
|
|
|
for res_map, restore_list in zip(batch_res_map, batch_restore_list):
|
|
|
|
if not isinstance(res_map, np.ndarray):
|
|
|
|
res_map = paddle.unsqueeze(res_map, axis=0)
|
|
|
|
for item in restore_list[::-1]:
|
|
|
|
h, w = item[1][0], item[1][1]
|
|
|
|
if item[0] == 'resize':
|
|
|
|
if isinstance(res_map, np.ndarray):
|
|
|
|
res_map = cv2.resize(
|
|
|
|
res_map, (w, h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
else:
|
|
|
|
res_map = F.interpolate(
|
|
|
|
res_map, (h, w),
|
|
|
|
mode='bilinear',
|
|
|
|
data_format='NHWC')
|
|
|
|
elif item[0] == 'padding':
|
|
|
|
x, y = item[2]
|
|
|
|
if isinstance(res_map, np.ndarray):
|
|
|
|
res_map = res_map[y:y + h, x:x + w]
|
|
|
|
else:
|
|
|
|
res_map = res_map[:, y:y + h, x:x + w, :]
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
res_map = res_map.squeeze()
|
|
|
|
if not isinstance(res_map, np.ndarray):
|
|
|
|
res_map = res_map.numpy()
|
|
|
|
res_map = self._normalize(res_map)
|
|
|
|
res_maps.append(res_map.squeeze())
|
|
|
|
return res_maps
|
|
|
|
|
|
|
|
def _check_transforms(self, transforms, mode):
|
|
|
|
super()._check_transforms(transforms, mode)
|
|
|
|
if not isinstance(transforms.arrange,
|
|
|
|
paddlers.transforms.ArrangeRestorer):
|
|
|
|
raise TypeError(
|
|
|
|
"`transforms.arrange` must be an ArrangeRestorer object.")
|
|
|
|
|
|
|
|
def build_data_loader(self, dataset, batch_size, mode='train'):
|
|
|
|
if dataset.num_samples < batch_size:
|
|
|
|
raise ValueError(
|
|
|
|
'The volume of dataset({}) must be larger than batch size({}).'
|
|
|
|
.format(dataset.num_samples, batch_size))
|
|
|
|
|
|
|
|
if mode != 'train':
|
|
|
|
return paddle.io.DataLoader(
|
|
|
|
dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
shuffle=dataset.shuffle,
|
|
|
|
drop_last=False,
|
|
|
|
collate_fn=dataset.batch_transforms,
|
|
|
|
num_workers=dataset.num_workers,
|
|
|
|
return_list=True,
|
|
|
|
use_shared_memory=False)
|
|
|
|
else:
|
|
|
|
return super(BaseRestorer, self).build_data_loader(dataset,
|
|
|
|
batch_size, mode)
|
|
|
|
|
|
|
|
def set_losses(self, losses):
|
|
|
|
self.losses = losses
|
|
|
|
|
|
|
|
def _tensor_to_images(self,
|
|
|
|
tensor,
|
|
|
|
transpose=True,
|
|
|
|
squeeze=True,
|
|
|
|
quantize=True):
|
|
|
|
if transpose:
|
|
|
|
tensor = paddle.transpose(tensor, perm=[0, 2, 3, 1]) # NHWC
|
|
|
|
if squeeze:
|
|
|
|
tensor = tensor.squeeze()
|
|
|
|
images = tensor.numpy().astype('float32')
|
|
|
|
images = self._normalize(images, copy=True, quantize=quantize)
|
|
|
|
return images
|
|
|
|
|
|
|
|
def _normalize(self, im, copy=False, quantize=True):
|
|
|
|
if copy:
|
|
|
|
im = im.copy()
|
|
|
|
im = np.clip(im, self.min_max[0], self.min_max[1])
|
|
|
|
if quantize:
|
|
|
|
im *= 255
|
|
|
|
im = im.astype('uint8')
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
|
|
class DRN(BaseRestorer):
|
|
|
|
TEST_OUT_KEY = -1
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
losses=None,
|
|
|
|
sr_factor=4,
|
|
|
|
min_max=None,
|
|
|
|
scales=(2, 4),
|
|
|
|
n_blocks=30,
|
|
|
|
n_feats=16,
|
|
|
|
n_colors=3,
|
|
|
|
rgb_range=1.0,
|
|
|
|
negval=0.2,
|
|
|
|
lq_loss_weight=0.1,
|
|
|
|
dual_loss_weight=0.1,
|
|
|
|
**params):
|
|
|
|
if sr_factor != max(scales):
|
|
|
|
raise ValueError(f"`sr_factor` must be equal to `max(scales)`.")
|
|
|
|
params.update({
|
|
|
|
'scale': scales,
|
|
|
|
'n_blocks': n_blocks,
|
|
|
|
'n_feats': n_feats,
|
|
|
|
'n_colors': n_colors,
|
|
|
|
'rgb_range': rgb_range,
|
|
|
|
'negval': negval
|
|
|
|
})
|
|
|
|
self.lq_loss_weight = lq_loss_weight
|
|
|
|
self.dual_loss_weight = dual_loss_weight
|
|
|
|
self.scales = scales
|
|
|
|
super(DRN, self).__init__(
|
|
|
|
model_name='DRN',
|
|
|
|
losses=losses,
|
|
|
|
sr_factor=sr_factor,
|
|
|
|
min_max=min_max,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
def build_net(self, **params):
|
|
|
|
from ppgan.modules.init import init_weights
|
|
|
|
generators = [ppgan.models.generators.DRNGenerator(**params)]
|
|
|
|
init_weights(generators[-1])
|
|
|
|
for scale in params['scale']:
|
|
|
|
dual_model = ppgan.models.generators.drn.DownBlock(
|
|
|
|
params['negval'], params['n_feats'], params['n_colors'], 2)
|
|
|
|
generators.append(dual_model)
|
|
|
|
init_weights(generators[-1])
|
|
|
|
return GANAdapter(generators, [])
|
|
|
|
|
|
|
|
def default_optimizer(self, parameters, *args, **kwargs):
|
|
|
|
optims_g = [
|
|
|
|
super(DRN, self).default_optimizer(params_g, *args, **kwargs)
|
|
|
|
for params_g in parameters['params_g']
|
|
|
|
]
|
|
|
|
return OptimizerAdapter(*optims_g)
|
|
|
|
|
|
|
|
def run_gan(self, net, inputs, mode, gan_mode='forward_primary'):
|
|
|
|
if mode != 'train':
|
|
|
|
raise ValueError("`mode` is not 'train'.")
|
|
|
|
outputs = OrderedDict()
|
|
|
|
if gan_mode == 'forward_primary':
|
|
|
|
sr = net.generator(inputs[0])
|
|
|
|
lr = [inputs[0]]
|
|
|
|
lr.extend([
|
|
|
|
F.interpolate(
|
|
|
|
inputs[0], scale_factor=s, mode='bicubic')
|
|
|
|
for s in self.scales[:-1]
|
|
|
|
])
|
|
|
|
loss = self.losses(sr[-1], inputs[1])
|
|
|
|
for i in range(1, len(sr)):
|
|
|
|
if self.lq_loss_weight > 0:
|
|
|
|
loss += self.losses(sr[i - 1 - len(sr)],
|
|
|
|
lr[i - len(sr)]) * self.lq_loss_weight
|
|
|
|
outputs['loss_prim'] = loss
|
|
|
|
outputs['sr'] = sr
|
|
|
|
outputs['lr'] = lr
|
|
|
|
elif gan_mode == 'forward_dual':
|
|
|
|
sr, lr = inputs[0], inputs[1]
|
|
|
|
sr2lr = []
|
|
|
|
n_scales = len(self.scales)
|
|
|
|
for i in range(n_scales):
|
|
|
|
sr2lr_i = net.generators[1 + i](sr[i - n_scales])
|
|
|
|
sr2lr.append(sr2lr_i)
|
|
|
|
loss = self.losses(sr2lr[0], lr[0])
|
|
|
|
for i in range(1, n_scales):
|
|
|
|
if self.dual_loss_weight > 0.0:
|
|
|
|
loss += self.losses(sr2lr[i], lr[i]) * self.dual_loss_weight
|
|
|
|
outputs['loss_dual'] = loss
|
|
|
|
else:
|
|
|
|
raise ValueError("Invalid `gan_mode`!")
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def train_step(self, step, data, net):
|
|
|
|
outputs = self.run_gan(
|
|
|
|
net, data, mode='train', gan_mode='forward_primary')
|
|
|
|
outputs.update(
|
|
|
|
self.run_gan(
|
|
|
|
net, (outputs['sr'], outputs['lr']),
|
|
|
|
mode='train',
|
|
|
|
gan_mode='forward_dual'))
|
|
|
|
self.optimizer.clear_grad()
|
|
|
|
(outputs['loss_prim'] + outputs['loss_dual']).backward()
|
|
|
|
self.optimizer.step()
|
|
|
|
return {
|
|
|
|
'loss': outputs['loss_prim'] + outputs['loss_dual'],
|
|
|
|
'loss_prim': outputs['loss_prim'],
|
|
|
|
'loss_dual': outputs['loss_dual']
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class LESRCNN(BaseRestorer):
|
|
|
|
def __init__(self,
|
|
|
|
losses=None,
|
|
|
|
sr_factor=4,
|
|
|
|
min_max=None,
|
|
|
|
multi_scale=False,
|
|
|
|
group=1,
|
|
|
|
**params):
|
|
|
|
params.update({
|
|
|
|
'scale': sr_factor if sr_factor is not None else 1,
|
|
|
|
'multi_scale': multi_scale,
|
|
|
|
'group': group
|
|
|
|
})
|
|
|
|
super(LESRCNN, self).__init__(
|
|
|
|
model_name='LESRCNN',
|
|
|
|
losses=losses,
|
|
|
|
sr_factor=sr_factor,
|
|
|
|
min_max=min_max,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
def build_net(self, **params):
|
|
|
|
net = ppgan.models.generators.LESRCNNGenerator(**params)
|
|
|
|
return net
|
|
|
|
|
|
|
|
|
|
|
|
class ESRGAN(BaseRestorer):
|
|
|
|
def __init__(self,
|
|
|
|
losses=None,
|
|
|
|
sr_factor=4,
|
|
|
|
min_max=None,
|
|
|
|
use_gan=True,
|
|
|
|
in_channels=3,
|
|
|
|
out_channels=3,
|
|
|
|
nf=64,
|
|
|
|
nb=23,
|
|
|
|
**params):
|
|
|
|
if sr_factor != 4:
|
|
|
|
raise ValueError("`sr_factor` must be 4.")
|
|
|
|
params.update({
|
|
|
|
'in_nc': in_channels,
|
|
|
|
'out_nc': out_channels,
|
|
|
|
'nf': nf,
|
|
|
|
'nb': nb
|
|
|
|
})
|
|
|
|
self.use_gan = use_gan
|
|
|
|
super(ESRGAN, self).__init__(
|
|
|
|
model_name='ESRGAN',
|
|
|
|
losses=losses,
|
|
|
|
sr_factor=sr_factor,
|
|
|
|
min_max=min_max,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
def build_net(self, **params):
|
|
|
|
from ppgan.modules.init import init_weights
|
|
|
|
generator = ppgan.models.generators.RRDBNet(**params)
|
|
|
|
init_weights(generator)
|
|
|
|
if self.use_gan:
|
|
|
|
discriminator = ppgan.models.discriminators.VGGDiscriminator128(
|
|
|
|
in_channels=params['out_nc'], num_feat=64)
|
|
|
|
net = GANAdapter(
|
|
|
|
generators=[generator], discriminators=[discriminator])
|
|
|
|
else:
|
|
|
|
net = generator
|
|
|
|
return net
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
if self.use_gan:
|
|
|
|
return {
|
|
|
|
'pixel': res_losses.L1Loss(loss_weight=0.01),
|
|
|
|
'perceptual': res_losses.PerceptualLoss(
|
|
|
|
layer_weights={'34': 1.0},
|
|
|
|
perceptual_weight=1.0,
|
|
|
|
style_weight=0.0,
|
|
|
|
norm_img=False),
|
|
|
|
'gan': res_losses.GANLoss(
|
|
|
|
gan_mode='vanilla', loss_weight=0.005)
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
return res_losses.L1Loss()
|
|
|
|
|
|
|
|
def default_optimizer(self, parameters, *args, **kwargs):
|
|
|
|
if self.use_gan:
|
|
|
|
optim_g = super(ESRGAN, self).default_optimizer(
|
|
|
|
parameters['params_g'][0], *args, **kwargs)
|
|
|
|
optim_d = super(ESRGAN, self).default_optimizer(
|
|
|
|
parameters['params_d'][0], *args, **kwargs)
|
|
|
|
return OptimizerAdapter(optim_g, optim_d)
|
|
|
|
else:
|
|
|
|
return super(ESRGAN, self).default_optimizer(parameters, *args,
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
def run_gan(self, net, inputs, mode, gan_mode='forward_g'):
|
|
|
|
if mode != 'train':
|
|
|
|
raise ValueError("`mode` is not 'train'.")
|
|
|
|
outputs = OrderedDict()
|
|
|
|
if gan_mode == 'forward_g':
|
|
|
|
loss_g = 0
|
|
|
|
g_pred = net.generator(inputs[0])
|
|
|
|
loss_pix = self.losses['pixel'](g_pred, inputs[1])
|
|
|
|
loss_perc, loss_sty = self.losses['perceptual'](g_pred, inputs[1])
|
|
|
|
loss_g += loss_pix
|
|
|
|
if loss_perc is not None:
|
|
|
|
loss_g += loss_perc
|
|
|
|
if loss_sty is not None:
|
|
|
|
loss_g += loss_sty
|
|
|
|
self._set_requires_grad(net.discriminator, False)
|
|
|
|
real_d_pred = net.discriminator(inputs[1]).detach()
|
|
|
|
fake_g_pred = net.discriminator(g_pred)
|
|
|
|
loss_g_real = self.losses['gan'](
|
|
|
|
real_d_pred - paddle.mean(fake_g_pred), False,
|
|
|
|
is_disc=False) * 0.5
|
|
|
|
loss_g_fake = self.losses['gan'](
|
|
|
|
fake_g_pred - paddle.mean(real_d_pred), True,
|
|
|
|
is_disc=False) * 0.5
|
|
|
|
loss_g_gan = loss_g_real + loss_g_fake
|
|
|
|
outputs['g_pred'] = g_pred.detach()
|
|
|
|
outputs['loss_g_pps'] = loss_g
|
|
|
|
outputs['loss_g_gan'] = loss_g_gan
|
|
|
|
elif gan_mode == 'forward_d':
|
|
|
|
self._set_requires_grad(net.discriminator, True)
|
|
|
|
# Real
|
|
|
|
fake_d_pred = net.discriminator(inputs[0]).detach()
|
|
|
|
real_d_pred = net.discriminator(inputs[1])
|
|
|
|
loss_d_real = self.losses['gan'](
|
|
|
|
real_d_pred - paddle.mean(fake_d_pred), True,
|
|
|
|
is_disc=True) * 0.5
|
|
|
|
# Fake
|
|
|
|
fake_d_pred = net.discriminator(inputs[0].detach())
|
|
|
|
loss_d_fake = self.losses['gan'](
|
|
|
|
fake_d_pred - paddle.mean(real_d_pred.detach()),
|
|
|
|
False,
|
|
|
|
is_disc=True) * 0.5
|
|
|
|
outputs['loss_d'] = loss_d_real + loss_d_fake
|
|
|
|
else:
|
|
|
|
raise ValueError("Invalid `gan_mode`!")
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def train_step(self, step, data, net):
|
|
|
|
if self.use_gan:
|
|
|
|
optim_g, optim_d = self.optimizer
|
|
|
|
|
|
|
|
outputs = self.run_gan(
|
|
|
|
net, data, mode='train', gan_mode='forward_g')
|
|
|
|
optim_g.clear_grad()
|
|
|
|
(outputs['loss_g_pps'] + outputs['loss_g_gan']).backward()
|
|
|
|
optim_g.step()
|
|
|
|
|
|
|
|
outputs.update(
|
|
|
|
self.run_gan(
|
|
|
|
net, (outputs['g_pred'], data[1]),
|
|
|
|
mode='train',
|
|
|
|
gan_mode='forward_d'))
|
|
|
|
optim_d.clear_grad()
|
|
|
|
outputs['loss_d'].backward()
|
|
|
|
optim_d.step()
|
|
|
|
|
|
|
|
outputs['loss'] = outputs['loss_g_pps'] + outputs[
|
|
|
|
'loss_g_gan'] + outputs['loss_d']
|
|
|
|
|
|
|
|
return {
|
|
|
|
'loss': outputs['loss'],
|
|
|
|
'loss_g_pps': outputs['loss_g_pps'],
|
|
|
|
'loss_g_gan': outputs['loss_g_gan'],
|
|
|
|
'loss_d': outputs['loss_d']
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
return super(ESRGAN, self).train_step(step, data, net)
|
|
|
|
|
|
|
|
def _set_requires_grad(self, net, requires_grad):
|
|
|
|
for p in net.parameters():
|
|
|
|
p.trainable = requires_grad
|
|
|
|
|
|
|
|
|
|
|
|
class RCAN(BaseRestorer):
|
|
|
|
def __init__(self,
|
|
|
|
losses=None,
|
|
|
|
sr_factor=4,
|
|
|
|
min_max=None,
|
|
|
|
n_resgroups=10,
|
|
|
|
n_resblocks=20,
|
|
|
|
n_feats=64,
|
|
|
|
n_colors=3,
|
|
|
|
rgb_range=1.0,
|
|
|
|
kernel_size=3,
|
|
|
|
reduction=16,
|
|
|
|
**params):
|
|
|
|
params.update({
|
|
|
|
'n_resgroups': n_resgroups,
|
|
|
|
'n_resblocks': n_resblocks,
|
|
|
|
'n_feats': n_feats,
|
|
|
|
'n_colors': n_colors,
|
|
|
|
'rgb_range': rgb_range,
|
|
|
|
'kernel_size': kernel_size,
|
|
|
|
'reduction': reduction
|
|
|
|
})
|
|
|
|
super(RCAN, self).__init__(
|
|
|
|
model_name='RCAN',
|
|
|
|
losses=losses,
|
|
|
|
sr_factor=sr_factor,
|
|
|
|
min_max=min_max,
|
|
|
|
**params)
|