|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import math
|
|
|
|
import os.path as osp
|
|
|
|
from collections import OrderedDict
|
|
|
|
from operator import itemgetter
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
|
|
import paddlers
|
|
|
|
import paddlers.models.ppcls as ppcls
|
|
|
|
import paddlers.rs_models.clas as cmcls
|
|
|
|
import paddlers.utils.logging as logging
|
|
|
|
from paddlers.utils import get_single_card_bs, DisablePrint
|
|
|
|
from paddlers.models.ppcls.metric import build_metrics
|
|
|
|
from paddlers.models import clas_losses
|
|
|
|
from paddlers.models.ppcls.data.postprocess import build_postprocess
|
|
|
|
from paddlers.utils.checkpoint import cls_pretrain_weights_dict
|
|
|
|
from paddlers.transforms import Resize, decode_image
|
|
|
|
from .base import BaseModel
|
|
|
|
|
|
|
|
__all__ = ["ResNet50_vd", "MobileNetV3", "HRNet", "CondenseNetV2"]
|
|
|
|
|
|
|
|
|
|
|
|
class BaseClassifier(BaseModel):
|
|
|
|
def __init__(self,
|
|
|
|
model_name,
|
|
|
|
in_channels=3,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
**params):
|
|
|
|
self.init_params = locals()
|
|
|
|
if 'with_net' in self.init_params:
|
|
|
|
del self.init_params['with_net']
|
|
|
|
super(BaseClassifier, self).__init__('classifier')
|
|
|
|
if not hasattr(ppcls.arch.backbone, model_name) and \
|
|
|
|
not hasattr(cmcls, model_name):
|
|
|
|
raise ValueError("ERROR: There is no model named {}.".format(
|
|
|
|
model_name))
|
|
|
|
self.model_name = model_name
|
|
|
|
self.in_channels = in_channels
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.use_mixed_loss = use_mixed_loss
|
|
|
|
self.metrics = None
|
|
|
|
self.losses = losses
|
|
|
|
self.labels = None
|
|
|
|
self.postprocess = None
|
|
|
|
if params.get('with_net', True):
|
|
|
|
params.pop('with_net', None)
|
|
|
|
self.net = self.build_net(**params)
|
|
|
|
self.find_unused_parameters = True
|
|
|
|
|
|
|
|
def build_net(self, **params):
|
|
|
|
with paddle.utils.unique_name.guard():
|
|
|
|
model = dict(ppcls.arch.backbone.__dict__,
|
|
|
|
**cmcls.__dict__)[self.model_name]
|
|
|
|
# TODO: Determine whether there is in_channels
|
|
|
|
try:
|
|
|
|
net = model(
|
|
|
|
class_num=self.num_classes,
|
|
|
|
in_channels=self.in_channels,
|
|
|
|
**params)
|
|
|
|
except:
|
|
|
|
net = model(class_num=self.num_classes, **params)
|
|
|
|
self.in_channels = 3
|
|
|
|
return net
|
|
|
|
|
|
|
|
def _build_inference_net(self):
|
|
|
|
infer_net = self.net
|
|
|
|
infer_net.eval()
|
|
|
|
return infer_net
|
|
|
|
|
|
|
|
def _fix_transforms_shape(self, image_shape):
|
|
|
|
if hasattr(self, 'test_transforms'):
|
|
|
|
if self.test_transforms is not None:
|
|
|
|
has_resize_op = False
|
|
|
|
resize_op_idx = -1
|
|
|
|
normalize_op_idx = len(self.test_transforms.transforms)
|
|
|
|
for idx, op in enumerate(self.test_transforms.transforms):
|
|
|
|
name = op.__class__.__name__
|
|
|
|
if name == 'Normalize':
|
|
|
|
normalize_op_idx = idx
|
|
|
|
if 'Resize' in name:
|
|
|
|
has_resize_op = True
|
|
|
|
resize_op_idx = idx
|
|
|
|
|
|
|
|
if not has_resize_op:
|
|
|
|
self.test_transforms.transforms.insert(
|
|
|
|
normalize_op_idx, Resize(target_size=image_shape))
|
|
|
|
else:
|
|
|
|
self.test_transforms.transforms[resize_op_idx] = Resize(
|
|
|
|
target_size=image_shape)
|
|
|
|
|
|
|
|
def _get_test_inputs(self, image_shape):
|
|
|
|
if image_shape is not None:
|
|
|
|
if len(image_shape) == 2:
|
|
|
|
image_shape = [1, 3] + image_shape
|
|
|
|
self._fix_transforms_shape(image_shape[-2:])
|
|
|
|
else:
|
|
|
|
image_shape = [None, 3, -1, -1]
|
|
|
|
self.fixed_input_shape = image_shape
|
|
|
|
input_spec = [
|
|
|
|
InputSpec(
|
|
|
|
shape=image_shape, name='image', dtype='float32')
|
|
|
|
]
|
|
|
|
return input_spec
|
|
|
|
|
|
|
|
def run(self, net, inputs, mode):
|
|
|
|
net_out = net(inputs[0])
|
|
|
|
|
|
|
|
if mode == 'test':
|
|
|
|
return self.postprocess(net_out)
|
|
|
|
|
|
|
|
outputs = OrderedDict()
|
|
|
|
label = paddle.to_tensor(inputs[1], dtype="int64")
|
|
|
|
|
|
|
|
if mode == 'eval':
|
|
|
|
label = paddle.unsqueeze(label, axis=-1)
|
|
|
|
metric_dict = self.metrics(net_out, label)
|
|
|
|
outputs['top1'] = metric_dict["top1"]
|
|
|
|
outputs['top5'] = metric_dict["top5"]
|
|
|
|
|
|
|
|
if mode == 'train':
|
|
|
|
loss_list = self.losses(net_out, label)
|
|
|
|
outputs['loss'] = loss_list['loss']
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def default_metric(self):
|
|
|
|
default_config = [{"TopkAcc": {"topk": [1, 5]}}]
|
|
|
|
return build_metrics(default_config)
|
|
|
|
|
|
|
|
def default_loss(self):
|
|
|
|
# TODO: use mixed loss and other loss
|
|
|
|
default_config = [{"CELoss": {"weight": 1.0}}]
|
|
|
|
return clas_losses.build_loss(default_config)
|
|
|
|
|
|
|
|
def default_optimizer(self,
|
|
|
|
parameters,
|
|
|
|
learning_rate,
|
|
|
|
num_epochs,
|
|
|
|
num_steps_each_epoch,
|
|
|
|
last_epoch=-1,
|
|
|
|
L2_coeff=0.00007):
|
|
|
|
decay_step = num_epochs * num_steps_each_epoch
|
|
|
|
lr_scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
|
|
|
|
learning_rate, T_max=decay_step, eta_min=0, last_epoch=last_epoch)
|
|
|
|
optimizer = paddle.optimizer.Momentum(
|
|
|
|
learning_rate=lr_scheduler,
|
|
|
|
parameters=parameters,
|
|
|
|
momentum=0.9,
|
|
|
|
weight_decay=paddle.regularizer.L2Decay(L2_coeff))
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
def default_postprocess(self, class_id_map_file):
|
|
|
|
default_config = {
|
|
|
|
"name": "Topk",
|
|
|
|
"topk": 1,
|
|
|
|
"class_id_map_file": class_id_map_file
|
|
|
|
}
|
|
|
|
return build_postprocess(default_config)
|
|
|
|
|
|
|
|
def build_postprocess_from_labels(self, topk=1):
|
|
|
|
label_dict = dict()
|
|
|
|
for i, label in enumerate(self.labels):
|
|
|
|
label_dict[i] = label
|
|
|
|
self.postprocess = build_postprocess({
|
|
|
|
"name": "Topk",
|
|
|
|
"topk": topk,
|
|
|
|
"class_id_map_file": None
|
|
|
|
})
|
|
|
|
# Add class_id_map from model.yml
|
|
|
|
self.postprocess.class_id_map = label_dict
|
|
|
|
|
|
|
|
def train(self,
|
|
|
|
num_epochs,
|
|
|
|
train_dataset,
|
|
|
|
train_batch_size=2,
|
|
|
|
eval_dataset=None,
|
|
|
|
optimizer=None,
|
|
|
|
save_interval_epochs=1,
|
|
|
|
log_interval_steps=2,
|
|
|
|
save_dir='output',
|
|
|
|
pretrain_weights='IMAGENET',
|
|
|
|
learning_rate=0.1,
|
|
|
|
lr_decay_power=0.9,
|
|
|
|
early_stop=False,
|
|
|
|
early_stop_patience=5,
|
|
|
|
use_vdl=True,
|
|
|
|
resume_checkpoint=None):
|
|
|
|
"""
|
|
|
|
Train the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_epochs (int): Number of epochs.
|
|
|
|
train_dataset (paddlers.datasets.ClasDataset): Training dataset.
|
|
|
|
train_batch_size (int, optional): Total batch size among all cards used in
|
|
|
|
training. Defaults to 2.
|
|
|
|
eval_dataset (paddlers.datasets.ClasDataset|None, optional): Evaluation dataset.
|
|
|
|
If None, the model will not be evaluated during training process.
|
|
|
|
Defaults to None.
|
|
|
|
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
|
|
|
|
training. If None, a default optimizer will be used. Defaults to None.
|
|
|
|
save_interval_epochs (int, optional): Epoch interval for saving the model.
|
|
|
|
Defaults to 1.
|
|
|
|
log_interval_steps (int, optional): Step interval for printing training
|
|
|
|
information. Defaults to 2.
|
|
|
|
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
|
pretrain_weights (str|None, optional): None or name/path of pretrained
|
|
|
|
weights. If None, no pretrained weights will be loaded.
|
|
|
|
Defaults to 'IMAGENET'.
|
|
|
|
learning_rate (float, optional): Learning rate for training.
|
|
|
|
Defaults to .1.
|
|
|
|
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
|
|
|
|
early_stop (bool, optional): Whether to adopt early stop strategy.
|
|
|
|
Defaults to False.
|
|
|
|
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
|
|
|
|
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
|
|
|
|
process. Defaults to True.
|
|
|
|
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
|
|
|
|
training from. If None, no training checkpoint will be resumed. At most
|
|
|
|
Aone of `resume_checkpoint` and `pretrain_weights` can be set simultaneously.
|
|
|
|
Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if self.status == 'Infer':
|
|
|
|
logging.error(
|
|
|
|
"Exported inference model does not support training.",
|
|
|
|
exit=True)
|
|
|
|
if pretrain_weights is not None and resume_checkpoint is not None:
|
|
|
|
logging.error(
|
|
|
|
"`pretrain_weights` and `resume_checkpoint` cannot be set simultaneously.",
|
|
|
|
exit=True)
|
|
|
|
self.labels = train_dataset.labels
|
|
|
|
if self.losses is None:
|
|
|
|
self.losses = self.default_loss()
|
|
|
|
self.metrics = self.default_metric()
|
|
|
|
self.postprocess = self.default_postprocess(train_dataset.label_list)
|
|
|
|
|
|
|
|
if optimizer is None:
|
|
|
|
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
|
|
|
|
self.optimizer = self.default_optimizer(
|
|
|
|
self.net.parameters(), learning_rate, num_epochs,
|
|
|
|
num_steps_each_epoch, lr_decay_power)
|
|
|
|
else:
|
|
|
|
self.optimizer = optimizer
|
|
|
|
|
|
|
|
if pretrain_weights is not None:
|
|
|
|
if not osp.exists(pretrain_weights):
|
|
|
|
if self.model_name not in cls_pretrain_weights_dict:
|
|
|
|
logging.warning(
|
|
|
|
"Path of `pretrain_weights` ('{}') does not exist!".
|
|
|
|
format(pretrain_weights))
|
|
|
|
pretrain_weights = None
|
|
|
|
elif pretrain_weights not in cls_pretrain_weights_dict[
|
|
|
|
self.model_name]:
|
|
|
|
logging.warning(
|
|
|
|
"Path of `pretrain_weights` ('{}') does not exist!".
|
|
|
|
format(pretrain_weights))
|
|
|
|
pretrain_weights = cls_pretrain_weights_dict[
|
|
|
|
self.model_name][0]
|
|
|
|
logging.warning(
|
|
|
|
"`pretrain_weights` is forcibly set to '{}'. "
|
|
|
|
"If you don't want to use pretrained weights, "
|
|
|
|
"set `pretrain_weights` to None.".format(
|
|
|
|
pretrain_weights))
|
|
|
|
else:
|
|
|
|
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
|
|
|
|
logging.error(
|
|
|
|
"Invalid pretrained weights. Please specify a .pdparams file.",
|
|
|
|
exit=True)
|
|
|
|
pretrained_dir = osp.join(save_dir, 'pretrain')
|
|
|
|
is_backbone_weights = False
|
|
|
|
self.initialize_net(
|
|
|
|
pretrain_weights=pretrain_weights,
|
|
|
|
save_dir=pretrained_dir,
|
|
|
|
resume_checkpoint=resume_checkpoint,
|
|
|
|
is_backbone_weights=is_backbone_weights)
|
|
|
|
|
|
|
|
self.train_loop(
|
|
|
|
num_epochs=num_epochs,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=train_batch_size,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
save_interval_epochs=save_interval_epochs,
|
|
|
|
log_interval_steps=log_interval_steps,
|
|
|
|
save_dir=save_dir,
|
|
|
|
early_stop=early_stop,
|
|
|
|
early_stop_patience=early_stop_patience,
|
|
|
|
use_vdl=use_vdl)
|
|
|
|
|
|
|
|
def quant_aware_train(self,
|
|
|
|
num_epochs,
|
|
|
|
train_dataset,
|
|
|
|
train_batch_size=2,
|
|
|
|
eval_dataset=None,
|
|
|
|
optimizer=None,
|
|
|
|
save_interval_epochs=1,
|
|
|
|
log_interval_steps=2,
|
|
|
|
save_dir='output',
|
|
|
|
learning_rate=0.0001,
|
|
|
|
lr_decay_power=0.9,
|
|
|
|
early_stop=False,
|
|
|
|
early_stop_patience=5,
|
|
|
|
use_vdl=True,
|
|
|
|
resume_checkpoint=None,
|
|
|
|
quant_config=None):
|
|
|
|
"""
|
|
|
|
Quantization-aware training.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_epochs (int): Number of epochs.
|
|
|
|
train_dataset (paddlers.datasets.ClasDataset): Training dataset.
|
|
|
|
train_batch_size (int, optional): Total batch size among all cards used in
|
|
|
|
training. Defaults to 2.
|
|
|
|
eval_dataset (paddlers.datasets.ClasDataset|None, optional): Evaluation dataset.
|
|
|
|
If None, the model will not be evaluated during training process.
|
|
|
|
Defaults to None.
|
|
|
|
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
|
|
|
|
training. If None, a default optimizer will be used. Defaults to None.
|
|
|
|
save_interval_epochs (int, optional): Epoch interval for saving the model.
|
|
|
|
Defaults to 1.
|
|
|
|
log_interval_steps (int, optional): Step interval for printing training
|
|
|
|
information. Defaults to 2.
|
|
|
|
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
|
learning_rate (float, optional): Learning rate for training.
|
|
|
|
Defaults to .0001.
|
|
|
|
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
|
|
|
|
early_stop (bool, optional): Whether to adopt early stop strategy.
|
|
|
|
Defaults to False.
|
|
|
|
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
|
|
|
|
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
|
|
|
|
process. Defaults to True.
|
|
|
|
quant_config (dict|None, optional): Quantization configuration. If None,
|
|
|
|
a default rule of thumb configuration will be used. Defaults to None.
|
|
|
|
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
|
|
|
|
quantization-aware training from. If None, no training checkpoint will
|
|
|
|
be resumed. Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
self._prepare_qat(quant_config)
|
|
|
|
self.train(
|
|
|
|
num_epochs=num_epochs,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=train_batch_size,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
optimizer=optimizer,
|
|
|
|
save_interval_epochs=save_interval_epochs,
|
|
|
|
log_interval_steps=log_interval_steps,
|
|
|
|
save_dir=save_dir,
|
|
|
|
pretrain_weights=None,
|
|
|
|
learning_rate=learning_rate,
|
|
|
|
lr_decay_power=lr_decay_power,
|
|
|
|
early_stop=early_stop,
|
|
|
|
early_stop_patience=early_stop_patience,
|
|
|
|
use_vdl=use_vdl,
|
|
|
|
resume_checkpoint=resume_checkpoint)
|
|
|
|
|
|
|
|
def evaluate(self, eval_dataset, batch_size=1, return_details=False):
|
|
|
|
"""
|
|
|
|
Evaluate the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
eval_dataset (paddlers.datasets.ClasDataset): Evaluation dataset.
|
|
|
|
batch_size (int, optional): Total batch size among all cards used for
|
|
|
|
evaluation. Defaults to 1.
|
|
|
|
return_details (bool, optional): Whether to return evaluation details.
|
|
|
|
Defaults to False.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
If `return_details` is False, return collections.OrderedDict with
|
|
|
|
key-value pairs:
|
|
|
|
{"top1": acc of top1,
|
|
|
|
"top5": acc of top5}.
|
|
|
|
"""
|
|
|
|
|
|
|
|
self._check_transforms(eval_dataset.transforms, 'eval')
|
|
|
|
|
|
|
|
self.net.eval()
|
|
|
|
nranks = paddle.distributed.get_world_size()
|
|
|
|
local_rank = paddle.distributed.get_rank()
|
|
|
|
if nranks > 1:
|
|
|
|
# Initialize parallel environment if not done.
|
|
|
|
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
|
|
|
|
):
|
|
|
|
paddle.distributed.init_parallel_env()
|
|
|
|
|
|
|
|
if batch_size > 1:
|
|
|
|
logging.warning(
|
|
|
|
"Classifier only supports single card evaluation with batch_size=1 "
|
|
|
|
"during evaluation, so batch_size is forcibly set to 1.")
|
|
|
|
batch_size = 1
|
|
|
|
|
|
|
|
if nranks < 2 or local_rank == 0:
|
|
|
|
self.eval_data_loader = self.build_data_loader(
|
|
|
|
eval_dataset, batch_size=batch_size, mode='eval')
|
|
|
|
logging.info(
|
|
|
|
"Start to evaluate(total_samples={}, total_steps={})...".format(
|
|
|
|
eval_dataset.num_samples, eval_dataset.num_samples))
|
|
|
|
|
|
|
|
top1s = []
|
|
|
|
top5s = []
|
|
|
|
with paddle.no_grad():
|
|
|
|
for step, data in enumerate(self.eval_data_loader):
|
|
|
|
data.append(eval_dataset.transforms.transforms)
|
|
|
|
outputs = self.run(self.net, data, 'eval')
|
|
|
|
top1s.append(outputs["top1"])
|
|
|
|
top5s.append(outputs["top5"])
|
|
|
|
|
|
|
|
top1 = np.mean(top1s)
|
|
|
|
top5 = np.mean(top5s)
|
|
|
|
eval_metrics = OrderedDict(zip(['top1', 'top5'], [top1, top5]))
|
|
|
|
|
|
|
|
if return_details:
|
|
|
|
# TODO: Add details
|
|
|
|
return eval_metrics, None
|
|
|
|
|
|
|
|
return eval_metrics
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
def predict(self, img_file, transforms=None):
|
|
|
|
"""
|
|
|
|
Do inference.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img_file (list[np.ndarray|str] | str | np.ndarray): Image path or decoded
|
|
|
|
image data, which also could constitute a list, meaning all images to be
|
|
|
|
predicted as a mini-batch.
|
|
|
|
transforms (paddlers.transforms.Compose|None, optional): Transforms for
|
|
|
|
inputs. If None, the transforms for evaluation process will be used.
|
|
|
|
Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
If `img_file` is a string or np.array, the result is a dict with the
|
|
|
|
following key-value pairs:
|
|
|
|
class_ids_map (np.ndarray): IDs of predicted classes.
|
|
|
|
scores_map (np.ndarray): Scores of predicted classes.
|
|
|
|
label_names_map (np.ndarray): Names of predicted classes.
|
|
|
|
|
|
|
|
If `img_file` is a list, the result is a list composed of dicts with the
|
|
|
|
above keys.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if transforms is None and not hasattr(self, 'test_transforms'):
|
|
|
|
raise ValueError("transforms need to be defined, now is None.")
|
|
|
|
if transforms is None:
|
|
|
|
transforms = self.test_transforms
|
|
|
|
if isinstance(img_file, (str, np.ndarray)):
|
|
|
|
images = [img_file]
|
|
|
|
else:
|
|
|
|
images = img_file
|
|
|
|
batch_im, batch_origin_shape = self.preprocess(images, transforms,
|
|
|
|
self.model_type)
|
|
|
|
self.net.eval()
|
|
|
|
data = (batch_im, batch_origin_shape, transforms.transforms)
|
|
|
|
|
|
|
|
if self.postprocess is None:
|
|
|
|
self.build_postprocess_from_labels()
|
|
|
|
|
|
|
|
outputs = self.run(self.net, data, 'test')
|
|
|
|
class_ids = map(itemgetter('class_ids'), outputs)
|
|
|
|
scores = map(itemgetter('scores'), outputs)
|
|
|
|
label_names = map(itemgetter('label_names'), outputs)
|
|
|
|
if isinstance(img_file, list):
|
|
|
|
prediction = [{
|
|
|
|
'class_ids_map': l,
|
|
|
|
'scores_map': s,
|
|
|
|
'label_names_map': n,
|
|
|
|
} for l, s, n in zip(class_ids, scores, label_names)]
|
|
|
|
else:
|
|
|
|
prediction = {
|
|
|
|
'class_ids_map': next(class_ids),
|
|
|
|
'scores_map': next(scores),
|
|
|
|
'label_names_map': next(label_names)
|
|
|
|
}
|
|
|
|
return prediction
|
|
|
|
|
|
|
|
def preprocess(self, images, transforms, to_tensor=True):
|
|
|
|
self._check_transforms(transforms, 'test')
|
|
|
|
batch_im = list()
|
|
|
|
batch_ori_shape = list()
|
|
|
|
for im in images:
|
|
|
|
if isinstance(im, str):
|
|
|
|
im = decode_image(im, read_raw=True)
|
|
|
|
ori_shape = im.shape[:2]
|
|
|
|
sample = {'image': im}
|
|
|
|
im = transforms(sample)
|
|
|
|
batch_im.append(im)
|
|
|
|
batch_ori_shape.append(ori_shape)
|
|
|
|
if to_tensor:
|
|
|
|
batch_im = paddle.to_tensor(batch_im)
|
|
|
|
else:
|
|
|
|
batch_im = np.asarray(batch_im)
|
|
|
|
|
|
|
|
return batch_im, batch_ori_shape
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_transforms_shape_info(batch_ori_shape, transforms):
|
|
|
|
batch_restore_list = list()
|
|
|
|
for ori_shape in batch_ori_shape:
|
|
|
|
restore_list = list()
|
|
|
|
h, w = ori_shape[0], ori_shape[1]
|
|
|
|
for op in transforms:
|
|
|
|
if op.__class__.__name__ == 'Resize':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
h, w = op.target_size
|
|
|
|
elif op.__class__.__name__ == 'ResizeByShort':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
im_short_size = min(h, w)
|
|
|
|
im_long_size = max(h, w)
|
|
|
|
scale = float(op.short_size) / float(im_short_size)
|
|
|
|
if 0 < op.max_size < np.round(scale * im_long_size):
|
|
|
|
scale = float(op.max_size) / float(im_long_size)
|
|
|
|
h = int(round(h * scale))
|
|
|
|
w = int(round(w * scale))
|
|
|
|
elif op.__class__.__name__ == 'ResizeByLong':
|
|
|
|
restore_list.append(('resize', (h, w)))
|
|
|
|
im_long_size = max(h, w)
|
|
|
|
scale = float(op.long_size) / float(im_long_size)
|
|
|
|
h = int(round(h * scale))
|
|
|
|
w = int(round(w * scale))
|
|
|
|
elif op.__class__.__name__ == 'Pad':
|
|
|
|
if op.target_size:
|
|
|
|
target_h, target_w = op.target_size
|
|
|
|
else:
|
|
|
|
target_h = int(
|
|
|
|
(np.ceil(h / op.size_divisor) * op.size_divisor))
|
|
|
|
target_w = int(
|
|
|
|
(np.ceil(w / op.size_divisor) * op.size_divisor))
|
|
|
|
|
|
|
|
if op.pad_mode == -1:
|
|
|
|
offsets = op.offsets
|
|
|
|
elif op.pad_mode == 0:
|
|
|
|
offsets = [0, 0]
|
|
|
|
elif op.pad_mode == 1:
|
|
|
|
offsets = [(target_h - h) // 2, (target_w - w) // 2]
|
|
|
|
else:
|
|
|
|
offsets = [target_h - h, target_w - w]
|
|
|
|
restore_list.append(('padding', (h, w), offsets))
|
|
|
|
h, w = target_h, target_w
|
|
|
|
|
|
|
|
batch_restore_list.append(restore_list)
|
|
|
|
return batch_restore_list
|
|
|
|
|
|
|
|
def _check_transforms(self, transforms, mode):
|
|
|
|
super()._check_transforms(transforms, mode)
|
|
|
|
if not isinstance(transforms.arrange,
|
|
|
|
paddlers.transforms.ArrangeClassifier):
|
|
|
|
raise TypeError(
|
|
|
|
"`transforms.arrange` must be an ArrangeClassifier object.")
|
|
|
|
|
|
|
|
def build_data_loader(self, dataset, batch_size, mode='train'):
|
|
|
|
if dataset.num_samples < batch_size:
|
|
|
|
raise ValueError(
|
|
|
|
'The volume of dataset({}) must be larger than batch size({}).'
|
|
|
|
.format(dataset.num_samples, batch_size))
|
|
|
|
|
|
|
|
if mode != 'train':
|
|
|
|
return paddle.io.DataLoader(
|
|
|
|
dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
shuffle=dataset.shuffle,
|
|
|
|
drop_last=False,
|
|
|
|
collate_fn=dataset.batch_transforms,
|
|
|
|
num_workers=dataset.num_workers,
|
|
|
|
return_list=True,
|
|
|
|
use_shared_memory=False)
|
|
|
|
else:
|
|
|
|
return super(BaseClassifier, self).build_data_loader(
|
|
|
|
dataset, batch_size, mode)
|
|
|
|
|
|
|
|
|
|
|
|
class ResNet50_vd(BaseClassifier):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
**params):
|
|
|
|
super(ResNet50_vd, self).__init__(
|
|
|
|
model_name='ResNet50_vd',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class MobileNetV3(BaseClassifier):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
**params):
|
|
|
|
super(MobileNetV3, self).__init__(
|
|
|
|
model_name='MobileNetV3_small_x1_0',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class HRNet(BaseClassifier):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
**params):
|
|
|
|
super(HRNet, self).__init__(
|
|
|
|
model_name='HRNet_W18_C',
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
**params)
|
|
|
|
|
|
|
|
|
|
|
|
class CondenseNetV2(BaseClassifier):
|
|
|
|
def __init__(self,
|
|
|
|
num_classes=2,
|
|
|
|
use_mixed_loss=False,
|
|
|
|
losses=None,
|
|
|
|
in_channels=3,
|
|
|
|
arch='A',
|
|
|
|
**params):
|
|
|
|
if arch not in ('A', 'B', 'C'):
|
|
|
|
raise ValueError("{} is not a supported architecture.".format(arch))
|
|
|
|
model_name = 'CondenseNetV2_' + arch
|
|
|
|
super(CondenseNetV2, self).__init__(
|
|
|
|
model_name=model_name,
|
|
|
|
num_classes=num_classes,
|
|
|
|
use_mixed_loss=use_mixed_loss,
|
|
|
|
losses=losses,
|
|
|
|
in_channels=in_channels,
|
|
|
|
**params)
|