|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
import math
|
|
|
|
from abc import ABCMeta, abstractmethod
|
|
|
|
from collections import Counter, defaultdict
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
import paddlers.utils.logging as logging
|
|
|
|
|
|
|
|
|
|
|
|
class Cache(metaclass=ABCMeta):
|
|
|
|
@abstractmethod
|
|
|
|
def get_block(self, i_st, j_st, h, w):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class SlowCache(Cache):
|
|
|
|
def __init__(self):
|
|
|
|
super(SlowCache, self).__init__()
|
|
|
|
self.cache = defaultdict(Counter)
|
|
|
|
|
|
|
|
def push_pixel(self, i, j, l):
|
|
|
|
self.cache[(i, j)][l] += 1
|
|
|
|
|
|
|
|
def push_block(self, i_st, j_st, h, w, data):
|
|
|
|
for i in range(0, h):
|
|
|
|
for j in range(0, w):
|
|
|
|
self.push_pixel(i_st + i, j_st + j, data[i, j])
|
|
|
|
|
|
|
|
def pop_pixel(self, i, j):
|
|
|
|
self.cache.pop((i, j))
|
|
|
|
|
|
|
|
def pop_block(self, i_st, j_st, h, w):
|
|
|
|
for i in range(0, h):
|
|
|
|
for j in range(0, w):
|
|
|
|
self.pop_pixel(i_st + i, j_st + j)
|
|
|
|
|
|
|
|
def get_pixel(self, i, j):
|
|
|
|
winners = self.cache[(i, j)].most_common(1)
|
|
|
|
winner = winners[0]
|
|
|
|
return winner[0]
|
|
|
|
|
|
|
|
def get_block(self, i_st, j_st, h, w):
|
|
|
|
block = []
|
|
|
|
for i in range(i_st, i_st + h):
|
|
|
|
row = []
|
|
|
|
for j in range(j_st, j_st + w):
|
|
|
|
row.append(self.get_pixel(i, j))
|
|
|
|
block.append(row)
|
|
|
|
return np.asarray(block)
|
|
|
|
|
|
|
|
|
|
|
|
class ProbCache(Cache):
|
|
|
|
def __init__(self, h, w, ch, cw, sh, sw, dtype=np.float32, order='c'):
|
|
|
|
super(ProbCache, self).__init__()
|
|
|
|
self.cache = None
|
|
|
|
self.h = h
|
|
|
|
self.w = w
|
|
|
|
self.ch = ch
|
|
|
|
self.cw = cw
|
|
|
|
self.sh = sh
|
|
|
|
self.sw = sw
|
|
|
|
if not issubclass(dtype, np.floating):
|
|
|
|
raise TypeError("`dtype` must be one of the floating types.")
|
|
|
|
self.dtype = dtype
|
|
|
|
order = order.lower()
|
|
|
|
if order not in ('c', 'f'):
|
|
|
|
raise ValueError("`order` other than 'c' and 'f' is not supported.")
|
|
|
|
self.order = order
|
|
|
|
|
|
|
|
def _alloc_memory(self, nc):
|
|
|
|
if self.order == 'c':
|
|
|
|
# Colomn-first order (C-style)
|
|
|
|
#
|
|
|
|
# <-- cw -->
|
|
|
|
# |--------|---------------------|^ ^
|
|
|
|
# | || | sh
|
|
|
|
# |--------|---------------------|| ch v
|
|
|
|
# | ||
|
|
|
|
# |--------|---------------------|v
|
|
|
|
# <------------ w --------------->
|
|
|
|
self.cache = np.zeros((self.ch, self.w, nc), dtype=self.dtype)
|
|
|
|
elif self.order == 'f':
|
|
|
|
# Row-first order (Fortran-style)
|
|
|
|
#
|
|
|
|
# <-- sw -->
|
|
|
|
# <---- cw ---->
|
|
|
|
# |--------|---|^ ^
|
|
|
|
# | | || |
|
|
|
|
# | | || ch
|
|
|
|
# | | || |
|
|
|
|
# |--------|---|| h v
|
|
|
|
# | | ||
|
|
|
|
# | | ||
|
|
|
|
# | | ||
|
|
|
|
# |--------|---|v
|
|
|
|
self.cache = np.zeros((self.h, self.cw, nc), dtype=self.dtype)
|
|
|
|
|
|
|
|
def update_block(self, i_st, j_st, h, w, prob_map):
|
|
|
|
if self.cache is None:
|
|
|
|
nc = prob_map.shape[2]
|
|
|
|
# Lazy allocation of memory
|
|
|
|
self._alloc_memory(nc)
|
|
|
|
self.cache[i_st:i_st + h, j_st:j_st + w] += prob_map
|
|
|
|
|
|
|
|
def roll_cache(self, shift):
|
|
|
|
if self.order == 'c':
|
|
|
|
self.cache[:-shift] = self.cache[shift:]
|
|
|
|
self.cache[-shift:, :] = 0
|
|
|
|
elif self.order == 'f':
|
|
|
|
self.cache[:, :-shift] = self.cache[:, shift:]
|
|
|
|
self.cache[:, -shift:] = 0
|
|
|
|
|
|
|
|
def get_block(self, i_st, j_st, h, w):
|
|
|
|
return np.argmax(self.cache[i_st:i_st + h, j_st:j_st + w], axis=2)
|
|
|
|
|
|
|
|
|
|
|
|
class OverlapProcessor(metaclass=ABCMeta):
|
|
|
|
def __init__(self, h, w, ch, cw, sh, sw):
|
|
|
|
super(OverlapProcessor, self).__init__()
|
|
|
|
self.h = h
|
|
|
|
self.w = w
|
|
|
|
self.ch = ch
|
|
|
|
self.cw = cw
|
|
|
|
self.sh = sh
|
|
|
|
self.sw = sw
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def process_pred(self, out, xoff, yoff):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class KeepFirstProcessor(OverlapProcessor):
|
|
|
|
def __init__(self, h, w, ch, cw, sh, sw, ds, inval=255):
|
|
|
|
super(KeepFirstProcessor, self).__init__(h, w, ch, cw, sh, sw)
|
|
|
|
self.ds = ds
|
|
|
|
self.inval = inval
|
|
|
|
|
|
|
|
def process_pred(self, out, xoff, yoff):
|
|
|
|
pred = out['label_map']
|
|
|
|
pred = pred[:self.ch, :self.cw]
|
|
|
|
rd_block = self.ds.ReadAsArray(xoff, yoff, self.cw, self.ch)
|
|
|
|
mask = rd_block != self.inval
|
|
|
|
pred = np.where(mask, rd_block, pred)
|
|
|
|
return pred
|
|
|
|
|
|
|
|
|
|
|
|
class KeepLastProcessor(OverlapProcessor):
|
|
|
|
def process_pred(self, out, xoff, yoff):
|
|
|
|
pred = out['label_map']
|
|
|
|
pred = pred[:self.ch, :self.cw]
|
|
|
|
return pred
|
|
|
|
|
|
|
|
|
|
|
|
class AccumProcessor(OverlapProcessor):
|
|
|
|
def __init__(self,
|
|
|
|
h,
|
|
|
|
w,
|
|
|
|
ch,
|
|
|
|
cw,
|
|
|
|
sh,
|
|
|
|
sw,
|
|
|
|
dtype=np.float16,
|
|
|
|
assign_weight=True):
|
|
|
|
super(AccumProcessor, self).__init__(h, w, ch, cw, sh, sw)
|
|
|
|
self.cache = ProbCache(h, w, ch, cw, sh, sw, dtype=dtype, order='c')
|
|
|
|
self.prev_yoff = None
|
|
|
|
self.assign_weight = assign_weight
|
|
|
|
|
|
|
|
def process_pred(self, out, xoff, yoff):
|
|
|
|
if self.prev_yoff is not None and yoff != self.prev_yoff:
|
|
|
|
if yoff < self.prev_yoff:
|
|
|
|
raise RuntimeError
|
|
|
|
self.cache.roll_cache(yoff - self.prev_yoff)
|
|
|
|
pred = out['label_map']
|
|
|
|
pred = pred[:self.ch, :self.cw]
|
|
|
|
prob = out['score_map']
|
|
|
|
prob = prob[:self.ch, :self.cw]
|
|
|
|
if self.assign_weight:
|
|
|
|
prob = assign_border_weights(prob, border_ratio=0.25, inplace=True)
|
|
|
|
self.cache.update_block(0, xoff, self.ch, self.cw, prob)
|
|
|
|
pred = self.cache.get_block(0, xoff, self.ch, self.cw)
|
|
|
|
self.prev_yoff = yoff
|
|
|
|
return pred
|
|
|
|
|
|
|
|
|
|
|
|
def assign_border_weights(array, weight=0.5, border_ratio=0.25, inplace=True):
|
|
|
|
if not inplace:
|
|
|
|
array = array.copy()
|
|
|
|
h, w = array.shape[:2]
|
|
|
|
hm, wm = int(h * border_ratio), int(w * border_ratio)
|
|
|
|
array[:hm] *= weight
|
|
|
|
array[-hm:] *= weight
|
|
|
|
array[:, :wm] *= weight
|
|
|
|
array[:, -wm:] *= weight
|
|
|
|
return array
|
|
|
|
|
|
|
|
|
|
|
|
def read_block(ds,
|
|
|
|
xoff,
|
|
|
|
yoff,
|
|
|
|
xsize,
|
|
|
|
ysize,
|
|
|
|
tar_xsize=None,
|
|
|
|
tar_ysize=None,
|
|
|
|
pad_val=0):
|
|
|
|
if tar_xsize is None:
|
|
|
|
tar_xsize = xsize
|
|
|
|
if tar_ysize is None:
|
|
|
|
tar_ysize = ysize
|
|
|
|
# Read data from dataset
|
|
|
|
block = ds.ReadAsArray(xoff, yoff, xsize, ysize)
|
|
|
|
c, real_ysize, real_xsize = block.shape
|
|
|
|
assert real_ysize == ysize and real_xsize == xsize
|
|
|
|
# [c, h, w] -> [h, w, c]
|
|
|
|
block = block.transpose((1, 2, 0))
|
|
|
|
if (real_ysize, real_xsize) != (tar_ysize, tar_xsize):
|
|
|
|
if real_ysize >= tar_ysize or real_xsize >= tar_xsize:
|
|
|
|
raise ValueError
|
|
|
|
padded_block = np.full(
|
|
|
|
(tar_ysize, tar_xsize, c), fill_value=pad_val, dtype=block.dtype)
|
|
|
|
# Fill
|
|
|
|
padded_block[:real_ysize, :real_xsize] = block
|
|
|
|
return padded_block
|
|
|
|
else:
|
|
|
|
return block
|
|
|
|
|
|
|
|
|
|
|
|
def slider_predict(predict_func,
|
|
|
|
img_file,
|
|
|
|
save_dir,
|
|
|
|
block_size,
|
|
|
|
overlap,
|
|
|
|
transforms,
|
|
|
|
invalid_value,
|
|
|
|
merge_strategy,
|
|
|
|
batch_size,
|
|
|
|
show_progress=False):
|
|
|
|
"""
|
|
|
|
Do inference using sliding windows.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
predict_func (callable): A callable object that makes the prediction.
|
|
|
|
img_file (str|tuple[str]): Image path(s).
|
|
|
|
save_dir (str): Directory that contains saved geotiff file.
|
|
|
|
block_size (list[int] | tuple[int] | int):
|
|
|
|
Size of block. If `block_size` is list or tuple, it should be in
|
|
|
|
(W, H) format.
|
|
|
|
overlap (list[int] | tuple[int] | int):
|
|
|
|
Overlap between two blocks. If `overlap` is list or tuple, it should
|
|
|
|
be in (W, H) format.
|
|
|
|
transforms (paddlers.transforms.Compose|None): Transforms for inputs. If
|
|
|
|
None, the transforms for evaluation process will be used.
|
|
|
|
invalid_value (int): Value that marks invalid pixels in output image.
|
|
|
|
Defaults to 255.
|
|
|
|
merge_strategy (str): Strategy to merge overlapping blocks. Choices are
|
|
|
|
{'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last'
|
|
|
|
means keeping the values of the first and the last block in
|
|
|
|
traversal order, respectively. 'accum' means determining the class
|
|
|
|
of an overlapping pixel according to accumulated probabilities.
|
|
|
|
batch_size (int): Batch size used in inference.
|
|
|
|
show_progress (bool, optional): Whether to show prediction progress with a
|
|
|
|
progress bar. Defaults to True.
|
|
|
|
"""
|
|
|
|
|
|
|
|
try:
|
|
|
|
from osgeo import gdal
|
|
|
|
except:
|
|
|
|
import gdal
|
|
|
|
|
|
|
|
if isinstance(block_size, int):
|
|
|
|
block_size = (block_size, block_size)
|
|
|
|
elif isinstance(block_size, (tuple, list)) and len(block_size) == 2:
|
|
|
|
block_size = tuple(block_size)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"`block_size` must be a tuple/list of length 2 or an integer.")
|
|
|
|
if isinstance(overlap, int):
|
|
|
|
overlap = (overlap, overlap)
|
|
|
|
elif isinstance(overlap, (tuple, list)) and len(overlap) == 2:
|
|
|
|
overlap = tuple(overlap)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"`overlap` must be a tuple/list of length 2 or an integer.")
|
|
|
|
|
|
|
|
step = np.array(
|
|
|
|
block_size, dtype=np.int32) - np.array(
|
|
|
|
overlap, dtype=np.int32)
|
|
|
|
if step[0] == 0 or step[1] == 0:
|
|
|
|
raise ValueError("`block_size` and `overlap` should not be equal.")
|
|
|
|
|
|
|
|
if isinstance(img_file, tuple):
|
|
|
|
if len(img_file) != 2:
|
|
|
|
raise ValueError("Tuple `img_file` must have the length of two.")
|
|
|
|
# Assume that two input images have the same size
|
|
|
|
src_data = gdal.Open(img_file[0])
|
|
|
|
src2_data = gdal.Open(img_file[1])
|
|
|
|
# Output name is the same as the name of the first image
|
|
|
|
file_name = osp.basename(osp.normpath(img_file[0]))
|
|
|
|
else:
|
|
|
|
src_data = gdal.Open(img_file)
|
|
|
|
file_name = osp.basename(osp.normpath(img_file))
|
|
|
|
|
|
|
|
# Get size of original raster
|
|
|
|
width = src_data.RasterXSize
|
|
|
|
height = src_data.RasterYSize
|
|
|
|
bands = src_data.RasterCount
|
|
|
|
|
|
|
|
# XXX: GDAL read behavior conforms to paddlers.transforms.decode_image(read_raw=True)
|
|
|
|
# except for SAR images.
|
|
|
|
if bands == 1:
|
|
|
|
logging.warning(
|
|
|
|
f"Detected `bands=1`. Please note that currently `slider_predict()` does not properly handle SAR images."
|
|
|
|
)
|
|
|
|
|
|
|
|
if block_size[0] > width or block_size[1] > height:
|
|
|
|
raise ValueError("`block_size` should not be larger than image size.")
|
|
|
|
|
|
|
|
driver = gdal.GetDriverByName("GTiff")
|
|
|
|
if not osp.exists(save_dir):
|
|
|
|
os.makedirs(save_dir)
|
|
|
|
# Replace extension name with '.tif'
|
|
|
|
file_name = osp.splitext(file_name)[0] + ".tif"
|
|
|
|
save_file = osp.join(save_dir, file_name)
|
|
|
|
dst_data = driver.Create(save_file, width, height, 1, gdal.GDT_Byte)
|
|
|
|
|
|
|
|
# Set meta-information
|
|
|
|
dst_data.SetGeoTransform(src_data.GetGeoTransform())
|
|
|
|
dst_data.SetProjection(src_data.GetProjection())
|
|
|
|
|
|
|
|
# Initialize raster with `invalid_value`
|
|
|
|
band = dst_data.GetRasterBand(1)
|
|
|
|
band.WriteArray(
|
|
|
|
np.full(
|
|
|
|
(height, width), fill_value=invalid_value, dtype="uint8"))
|
|
|
|
|
|
|
|
if overlap == (0, 0) or block_size == (width, height):
|
|
|
|
# When there is no overlap or the whole image is used as input,
|
|
|
|
# use 'keep_last' strategy as it introduces least overheads
|
|
|
|
merge_strategy = 'keep_last'
|
|
|
|
|
|
|
|
if merge_strategy == 'keep_first':
|
|
|
|
overlap_processor = KeepFirstProcessor(
|
|
|
|
height,
|
|
|
|
width,
|
|
|
|
*block_size[::-1],
|
|
|
|
*step[::-1],
|
|
|
|
band,
|
|
|
|
inval=invalid_value)
|
|
|
|
elif merge_strategy == 'keep_last':
|
|
|
|
overlap_processor = KeepLastProcessor(height, width, *block_size[::-1],
|
|
|
|
*step[::-1])
|
|
|
|
elif merge_strategy == 'accum':
|
|
|
|
overlap_processor = AccumProcessor(height, width, *block_size[::-1],
|
|
|
|
*step[::-1])
|
|
|
|
else:
|
|
|
|
raise ValueError("{} is not a supported stragegy for block merging.".
|
|
|
|
format(merge_strategy))
|
|
|
|
|
|
|
|
xsize, ysize = block_size
|
|
|
|
num_blocks = math.ceil(height / step[1]) * math.ceil(width / step[0])
|
|
|
|
cnt = 0
|
|
|
|
if show_progress:
|
|
|
|
pb = tqdm(total=num_blocks)
|
|
|
|
batch_data = []
|
|
|
|
batch_offsets = []
|
|
|
|
for yoff in range(0, height, step[1]):
|
|
|
|
for xoff in range(0, width, step[0]):
|
|
|
|
if xoff + xsize > width:
|
|
|
|
xoff = width - xsize
|
|
|
|
is_end_of_row = True
|
|
|
|
else:
|
|
|
|
is_end_of_row = False
|
|
|
|
if yoff + ysize > height:
|
|
|
|
yoff = height - ysize
|
|
|
|
is_end_of_col = True
|
|
|
|
else:
|
|
|
|
is_end_of_col = False
|
|
|
|
|
|
|
|
# Read
|
|
|
|
im = read_block(src_data, xoff, yoff, xsize, ysize)
|
|
|
|
|
|
|
|
if isinstance(img_file, tuple):
|
|
|
|
im2 = read_block(src2_data, xoff, yoff, xsize, ysize)
|
|
|
|
batch_data.append((im, im2))
|
|
|
|
else:
|
|
|
|
batch_data.append(im)
|
|
|
|
|
|
|
|
batch_offsets.append((xoff, yoff))
|
|
|
|
|
|
|
|
len_batch = len(batch_data)
|
|
|
|
|
|
|
|
if is_end_of_row and is_end_of_col and len_batch < batch_size:
|
|
|
|
# Pad `batch_data` by repeating the last element
|
|
|
|
batch_data = batch_data + [batch_data[-1]] * (batch_size -
|
|
|
|
len_batch)
|
|
|
|
# While keeping `len(batch_offsets)` the number of valid elements in the batch
|
|
|
|
|
|
|
|
if len(batch_data) == batch_size:
|
|
|
|
# Predict
|
|
|
|
batch_out = predict_func(batch_data, transforms=transforms)
|
|
|
|
|
|
|
|
for out, (xoff_, yoff_) in zip(batch_out, batch_offsets):
|
|
|
|
# Get processed result
|
|
|
|
pred = overlap_processor.process_pred(out, xoff_, yoff_)
|
|
|
|
# Write to file
|
|
|
|
band.WriteArray(pred, xoff_, yoff_)
|
|
|
|
|
|
|
|
dst_data.FlushCache()
|
|
|
|
batch_data.clear()
|
|
|
|
batch_offsets.clear()
|
|
|
|
|
|
|
|
cnt += 1
|
|
|
|
|
|
|
|
if show_progress:
|
|
|
|
pb.update(1)
|
|
|
|
pb.set_description("{} out of {} blocks processed.".format(
|
|
|
|
cnt, num_blocks))
|
|
|
|
|
|
|
|
dst_data = None
|
|
|
|
logging.info("GeoTiff file saved in {}.".format(save_file))
|