You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
798 lines
26 KiB
798 lines
26 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import math
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
|
||
|
from .layers import ConvBNReLU, ConvBN
|
||
|
|
||
|
__all__ = [
|
||
|
"HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30",
|
||
|
"HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", "HRNet_W60", "HRNet_W64"
|
||
|
]
|
||
|
|
||
|
|
||
|
class HRNet(nn.Layer):
|
||
|
"""
|
||
|
The HRNet implementation based on PaddlePaddle.
|
||
|
|
||
|
The original article refers to
|
||
|
Jingdong Wang, et, al. "HRNet:Deep High-Resolution Representation Learning for Visual Recognition"
|
||
|
(https://arxiv.org/pdf/1908.07919.pdf).
|
||
|
|
||
|
Args:
|
||
|
pretrained (str): The path of pretrained model.
|
||
|
stage1_num_modules (int): Number of modules for stage1. Default 1.
|
||
|
stage1_num_blocks (list): Number of blocks per module for stage1. Default [4].
|
||
|
stage1_num_channels (list): Number of channels per branch for stage1. Default [64].
|
||
|
stage2_num_modules (int): Number of modules for stage2. Default 1.
|
||
|
stage2_num_blocks (list): Number of blocks per module for stage2. Default [4, 4]
|
||
|
stage2_num_channels (list): Number of channels per branch for stage2. Default [18, 36].
|
||
|
stage3_num_modules (int): Number of modules for stage3. Default 4.
|
||
|
stage3_num_blocks (list): Number of blocks per module for stage3. Default [4, 4, 4]
|
||
|
stage3_num_channels (list): Number of channels per branch for stage3. Default [18, 36, 72].
|
||
|
stage4_num_modules (int): Number of modules for stage4. Default 3.
|
||
|
stage4_num_blocks (list): Number of blocks per module for stage4. Default [4, 4, 4, 4]
|
||
|
stage4_num_channels (list): Number of channels per branch for stage4. Default [18, 36, 72. 144].
|
||
|
has_se (bool): Whether to use Squeeze-and-Excitation module. Default False.
|
||
|
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
|
||
|
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
pretrained=None,
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[4],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[4, 4],
|
||
|
stage2_num_channels=[18, 36],
|
||
|
stage3_num_modules=4,
|
||
|
stage3_num_blocks=[4, 4, 4],
|
||
|
stage3_num_channels=[18, 36, 72],
|
||
|
stage4_num_modules=3,
|
||
|
stage4_num_blocks=[4, 4, 4, 4],
|
||
|
stage4_num_channels=[18, 36, 72, 144],
|
||
|
has_se=False,
|
||
|
align_corners=False):
|
||
|
super(HRNet, self).__init__()
|
||
|
self.pretrained = pretrained
|
||
|
self.stage1_num_modules = stage1_num_modules
|
||
|
self.stage1_num_blocks = stage1_num_blocks
|
||
|
self.stage1_num_channels = stage1_num_channels
|
||
|
self.stage2_num_modules = stage2_num_modules
|
||
|
self.stage2_num_blocks = stage2_num_blocks
|
||
|
self.stage2_num_channels = stage2_num_channels
|
||
|
self.stage3_num_modules = stage3_num_modules
|
||
|
self.stage3_num_blocks = stage3_num_blocks
|
||
|
self.stage3_num_channels = stage3_num_channels
|
||
|
self.stage4_num_modules = stage4_num_modules
|
||
|
self.stage4_num_blocks = stage4_num_blocks
|
||
|
self.stage4_num_channels = stage4_num_channels
|
||
|
self.has_se = has_se
|
||
|
self.align_corners = align_corners
|
||
|
self.feat_channels = [sum(stage4_num_channels)]
|
||
|
|
||
|
self.conv_layer1_1 = ConvBNReLU(
|
||
|
in_channels=3,
|
||
|
out_channels=64,
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
padding='same',
|
||
|
bias_attr=False)
|
||
|
|
||
|
self.conv_layer1_2 = ConvBNReLU(
|
||
|
in_channels=64,
|
||
|
out_channels=64,
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
padding='same',
|
||
|
bias_attr=False)
|
||
|
|
||
|
self.la1 = Layer1(
|
||
|
num_channels=64,
|
||
|
num_blocks=self.stage1_num_blocks[0],
|
||
|
num_filters=self.stage1_num_channels[0],
|
||
|
has_se=has_se,
|
||
|
name="layer2")
|
||
|
|
||
|
self.tr1 = TransitionLayer(
|
||
|
in_channels=[self.stage1_num_channels[0] * 4],
|
||
|
out_channels=self.stage2_num_channels,
|
||
|
name="tr1")
|
||
|
|
||
|
self.st2 = Stage(
|
||
|
num_channels=self.stage2_num_channels,
|
||
|
num_modules=self.stage2_num_modules,
|
||
|
num_blocks=self.stage2_num_blocks,
|
||
|
num_filters=self.stage2_num_channels,
|
||
|
has_se=self.has_se,
|
||
|
name="st2",
|
||
|
align_corners=align_corners)
|
||
|
|
||
|
self.tr2 = TransitionLayer(
|
||
|
in_channels=self.stage2_num_channels,
|
||
|
out_channels=self.stage3_num_channels,
|
||
|
name="tr2")
|
||
|
self.st3 = Stage(
|
||
|
num_channels=self.stage3_num_channels,
|
||
|
num_modules=self.stage3_num_modules,
|
||
|
num_blocks=self.stage3_num_blocks,
|
||
|
num_filters=self.stage3_num_channels,
|
||
|
has_se=self.has_se,
|
||
|
name="st3",
|
||
|
align_corners=align_corners)
|
||
|
|
||
|
self.tr3 = TransitionLayer(
|
||
|
in_channels=self.stage3_num_channels,
|
||
|
out_channels=self.stage4_num_channels,
|
||
|
name="tr3")
|
||
|
self.st4 = Stage(
|
||
|
num_channels=self.stage4_num_channels,
|
||
|
num_modules=self.stage4_num_modules,
|
||
|
num_blocks=self.stage4_num_blocks,
|
||
|
num_filters=self.stage4_num_channels,
|
||
|
has_se=self.has_se,
|
||
|
name="st4",
|
||
|
align_corners=align_corners)
|
||
|
|
||
|
def forward(self, x):
|
||
|
conv1 = self.conv_layer1_1(x)
|
||
|
conv2 = self.conv_layer1_2(conv1)
|
||
|
|
||
|
la1 = self.la1(conv2)
|
||
|
|
||
|
tr1 = self.tr1([la1])
|
||
|
st2 = self.st2(tr1)
|
||
|
|
||
|
tr2 = self.tr2(st2)
|
||
|
st3 = self.st3(tr2)
|
||
|
|
||
|
tr3 = self.tr3(st3)
|
||
|
st4 = self.st4(tr3)
|
||
|
|
||
|
x0_h, x0_w = st4[0].shape[2:]
|
||
|
x1 = F.interpolate(
|
||
|
st4[1], (x0_h, x0_w),
|
||
|
mode='bilinear',
|
||
|
align_corners=self.align_corners)
|
||
|
x2 = F.interpolate(
|
||
|
st4[2], (x0_h, x0_w),
|
||
|
mode='bilinear',
|
||
|
align_corners=self.align_corners)
|
||
|
x3 = F.interpolate(
|
||
|
st4[3], (x0_h, x0_w),
|
||
|
mode='bilinear',
|
||
|
align_corners=self.align_corners)
|
||
|
x = paddle.concat([st4[0], x1, x2, x3], axis=1)
|
||
|
|
||
|
return [x]
|
||
|
|
||
|
|
||
|
class Layer1(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_channels,
|
||
|
num_filters,
|
||
|
num_blocks,
|
||
|
has_se=False,
|
||
|
name=None):
|
||
|
super(Layer1, self).__init__()
|
||
|
|
||
|
self.bottleneck_block_list = []
|
||
|
|
||
|
for i in range(num_blocks):
|
||
|
bottleneck_block = self.add_sublayer(
|
||
|
"bb_{}_{}".format(name, i + 1),
|
||
|
BottleneckBlock(
|
||
|
num_channels=num_channels if i == 0 else num_filters * 4,
|
||
|
num_filters=num_filters,
|
||
|
has_se=has_se,
|
||
|
stride=1,
|
||
|
downsample=True if i == 0 else False,
|
||
|
name=name + '_' + str(i + 1)))
|
||
|
self.bottleneck_block_list.append(bottleneck_block)
|
||
|
|
||
|
def forward(self, x):
|
||
|
conv = x
|
||
|
for block_func in self.bottleneck_block_list:
|
||
|
conv = block_func(conv)
|
||
|
return conv
|
||
|
|
||
|
|
||
|
class TransitionLayer(nn.Layer):
|
||
|
def __init__(self, in_channels, out_channels, name=None):
|
||
|
super(TransitionLayer, self).__init__()
|
||
|
|
||
|
num_in = len(in_channels)
|
||
|
num_out = len(out_channels)
|
||
|
self.conv_bn_func_list = []
|
||
|
for i in range(num_out):
|
||
|
residual = None
|
||
|
if i < num_in:
|
||
|
if in_channels[i] != out_channels[i]:
|
||
|
residual = self.add_sublayer(
|
||
|
"transition_{}_layer_{}".format(name, i + 1),
|
||
|
ConvBNReLU(
|
||
|
in_channels=in_channels[i],
|
||
|
out_channels=out_channels[i],
|
||
|
kernel_size=3,
|
||
|
padding='same',
|
||
|
bias_attr=False))
|
||
|
else:
|
||
|
residual = self.add_sublayer(
|
||
|
"transition_{}_layer_{}".format(name, i + 1),
|
||
|
ConvBNReLU(
|
||
|
in_channels=in_channels[-1],
|
||
|
out_channels=out_channels[i],
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
padding='same',
|
||
|
bias_attr=False))
|
||
|
self.conv_bn_func_list.append(residual)
|
||
|
|
||
|
def forward(self, x):
|
||
|
outs = []
|
||
|
for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
|
||
|
if conv_bn_func is None:
|
||
|
outs.append(x[idx])
|
||
|
else:
|
||
|
if idx < len(x):
|
||
|
outs.append(conv_bn_func(x[idx]))
|
||
|
else:
|
||
|
outs.append(conv_bn_func(x[-1]))
|
||
|
return outs
|
||
|
|
||
|
|
||
|
class Branches(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_blocks,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
has_se=False,
|
||
|
name=None):
|
||
|
super(Branches, self).__init__()
|
||
|
|
||
|
self.basic_block_list = []
|
||
|
|
||
|
for i in range(len(out_channels)):
|
||
|
self.basic_block_list.append([])
|
||
|
for j in range(num_blocks[i]):
|
||
|
in_ch = in_channels[i] if j == 0 else out_channels[i]
|
||
|
basic_block_func = self.add_sublayer(
|
||
|
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
|
||
|
BasicBlock(
|
||
|
num_channels=in_ch,
|
||
|
num_filters=out_channels[i],
|
||
|
has_se=has_se,
|
||
|
name=name + '_branch_layer_' + str(i + 1) + '_' +
|
||
|
str(j + 1)))
|
||
|
self.basic_block_list[i].append(basic_block_func)
|
||
|
|
||
|
def forward(self, x):
|
||
|
outs = []
|
||
|
for idx, input in enumerate(x):
|
||
|
conv = input
|
||
|
for basic_block_func in self.basic_block_list[idx]:
|
||
|
conv = basic_block_func(conv)
|
||
|
outs.append(conv)
|
||
|
return outs
|
||
|
|
||
|
|
||
|
class BottleneckBlock(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_channels,
|
||
|
num_filters,
|
||
|
has_se,
|
||
|
stride=1,
|
||
|
downsample=False,
|
||
|
name=None):
|
||
|
super(BottleneckBlock, self).__init__()
|
||
|
|
||
|
self.has_se = has_se
|
||
|
self.downsample = downsample
|
||
|
|
||
|
self.conv1 = ConvBNReLU(
|
||
|
in_channels=num_channels,
|
||
|
out_channels=num_filters,
|
||
|
kernel_size=1,
|
||
|
padding='same',
|
||
|
bias_attr=False)
|
||
|
|
||
|
self.conv2 = ConvBNReLU(
|
||
|
in_channels=num_filters,
|
||
|
out_channels=num_filters,
|
||
|
kernel_size=3,
|
||
|
stride=stride,
|
||
|
padding='same',
|
||
|
bias_attr=False)
|
||
|
|
||
|
self.conv3 = ConvBN(
|
||
|
in_channels=num_filters,
|
||
|
out_channels=num_filters * 4,
|
||
|
kernel_size=1,
|
||
|
padding='same',
|
||
|
bias_attr=False)
|
||
|
|
||
|
if self.downsample:
|
||
|
self.conv_down = ConvBN(
|
||
|
in_channels=num_channels,
|
||
|
out_channels=num_filters * 4,
|
||
|
kernel_size=1,
|
||
|
padding='same',
|
||
|
bias_attr=False)
|
||
|
|
||
|
if self.has_se:
|
||
|
self.se = SELayer(
|
||
|
num_channels=num_filters * 4,
|
||
|
num_filters=num_filters * 4,
|
||
|
reduction_ratio=16,
|
||
|
name=name + '_fc')
|
||
|
|
||
|
def forward(self, x):
|
||
|
residual = x
|
||
|
conv1 = self.conv1(x)
|
||
|
conv2 = self.conv2(conv1)
|
||
|
conv3 = self.conv3(conv2)
|
||
|
|
||
|
if self.downsample:
|
||
|
residual = self.conv_down(x)
|
||
|
|
||
|
if self.has_se:
|
||
|
conv3 = self.se(conv3)
|
||
|
|
||
|
y = conv3 + residual
|
||
|
y = F.relu(y)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class BasicBlock(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_channels,
|
||
|
num_filters,
|
||
|
stride=1,
|
||
|
has_se=False,
|
||
|
downsample=False,
|
||
|
name=None):
|
||
|
super(BasicBlock, self).__init__()
|
||
|
|
||
|
self.has_se = has_se
|
||
|
self.downsample = downsample
|
||
|
|
||
|
self.conv1 = ConvBNReLU(
|
||
|
in_channels=num_channels,
|
||
|
out_channels=num_filters,
|
||
|
kernel_size=3,
|
||
|
stride=stride,
|
||
|
padding='same',
|
||
|
bias_attr=False)
|
||
|
self.conv2 = ConvBN(
|
||
|
in_channels=num_filters,
|
||
|
out_channels=num_filters,
|
||
|
kernel_size=3,
|
||
|
padding='same',
|
||
|
bias_attr=False)
|
||
|
|
||
|
if self.downsample:
|
||
|
self.conv_down = ConvBNReLU(
|
||
|
in_channels=num_channels,
|
||
|
out_channels=num_filters,
|
||
|
kernel_size=1,
|
||
|
padding='same',
|
||
|
bias_attr=False)
|
||
|
|
||
|
if self.has_se:
|
||
|
self.se = SELayer(
|
||
|
num_channels=num_filters,
|
||
|
num_filters=num_filters,
|
||
|
reduction_ratio=16,
|
||
|
name=name + '_fc')
|
||
|
|
||
|
def forward(self, x):
|
||
|
residual = x
|
||
|
conv1 = self.conv1(x)
|
||
|
conv2 = self.conv2(conv1)
|
||
|
|
||
|
if self.downsample:
|
||
|
residual = self.conv_down(x)
|
||
|
|
||
|
if self.has_se:
|
||
|
conv2 = self.se(conv2)
|
||
|
|
||
|
y = conv2 + residual
|
||
|
y = F.relu(y)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class SELayer(nn.Layer):
|
||
|
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
|
||
|
super(SELayer, self).__init__()
|
||
|
|
||
|
self.pool2d_gap = nn.AdaptiveAvgPool2D(1)
|
||
|
|
||
|
self._num_channels = num_channels
|
||
|
|
||
|
med_ch = int(num_channels / reduction_ratio)
|
||
|
stdv = 1.0 / math.sqrt(num_channels * 1.0)
|
||
|
self.squeeze = nn.Linear(
|
||
|
num_channels,
|
||
|
med_ch,
|
||
|
weight_attr=paddle.ParamAttr(
|
||
|
initializer=nn.initializer.Uniform(-stdv, stdv)))
|
||
|
|
||
|
stdv = 1.0 / math.sqrt(med_ch * 1.0)
|
||
|
self.excitation = nn.Linear(
|
||
|
med_ch,
|
||
|
num_filters,
|
||
|
weight_attr=paddle.ParamAttr(
|
||
|
initializer=nn.initializer.Uniform(-stdv, stdv)))
|
||
|
|
||
|
def forward(self, x):
|
||
|
pool = self.pool2d_gap(x)
|
||
|
pool = paddle.reshape(pool, shape=[-1, self._num_channels])
|
||
|
squeeze = self.squeeze(pool)
|
||
|
squeeze = F.relu(squeeze)
|
||
|
excitation = self.excitation(squeeze)
|
||
|
excitation = F.sigmoid(excitation)
|
||
|
excitation = paddle.reshape(
|
||
|
excitation, shape=[-1, self._num_channels, 1, 1])
|
||
|
out = x * excitation
|
||
|
return out
|
||
|
|
||
|
|
||
|
class Stage(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_channels,
|
||
|
num_modules,
|
||
|
num_blocks,
|
||
|
num_filters,
|
||
|
has_se=False,
|
||
|
multi_scale_output=True,
|
||
|
name=None,
|
||
|
align_corners=False):
|
||
|
super(Stage, self).__init__()
|
||
|
|
||
|
self._num_modules = num_modules
|
||
|
|
||
|
self.stage_func_list = []
|
||
|
for i in range(num_modules):
|
||
|
if i == num_modules - 1 and not multi_scale_output:
|
||
|
stage_func = self.add_sublayer(
|
||
|
"stage_{}_{}".format(name, i + 1),
|
||
|
HighResolutionModule(
|
||
|
num_channels=num_channels,
|
||
|
num_blocks=num_blocks,
|
||
|
num_filters=num_filters,
|
||
|
has_se=has_se,
|
||
|
multi_scale_output=False,
|
||
|
name=name + '_' + str(i + 1),
|
||
|
align_corners=align_corners))
|
||
|
else:
|
||
|
stage_func = self.add_sublayer(
|
||
|
"stage_{}_{}".format(name, i + 1),
|
||
|
HighResolutionModule(
|
||
|
num_channels=num_channels,
|
||
|
num_blocks=num_blocks,
|
||
|
num_filters=num_filters,
|
||
|
has_se=has_se,
|
||
|
name=name + '_' + str(i + 1),
|
||
|
align_corners=align_corners))
|
||
|
|
||
|
self.stage_func_list.append(stage_func)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = x
|
||
|
for idx in range(self._num_modules):
|
||
|
out = self.stage_func_list[idx](out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class HighResolutionModule(nn.Layer):
|
||
|
def __init__(self,
|
||
|
num_channels,
|
||
|
num_blocks,
|
||
|
num_filters,
|
||
|
has_se=False,
|
||
|
multi_scale_output=True,
|
||
|
name=None,
|
||
|
align_corners=False):
|
||
|
super(HighResolutionModule, self).__init__()
|
||
|
|
||
|
self.branches_func = Branches(
|
||
|
num_blocks=num_blocks,
|
||
|
in_channels=num_channels,
|
||
|
out_channels=num_filters,
|
||
|
has_se=has_se,
|
||
|
name=name)
|
||
|
|
||
|
self.fuse_func = FuseLayers(
|
||
|
in_channels=num_filters,
|
||
|
out_channels=num_filters,
|
||
|
multi_scale_output=multi_scale_output,
|
||
|
name=name,
|
||
|
align_corners=align_corners)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = self.branches_func(x)
|
||
|
out = self.fuse_func(out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class FuseLayers(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
multi_scale_output=True,
|
||
|
name=None,
|
||
|
align_corners=False):
|
||
|
super(FuseLayers, self).__init__()
|
||
|
|
||
|
self._actual_ch = len(in_channels) if multi_scale_output else 1
|
||
|
self._in_channels = in_channels
|
||
|
self.align_corners = align_corners
|
||
|
|
||
|
self.residual_func_list = []
|
||
|
for i in range(self._actual_ch):
|
||
|
for j in range(len(in_channels)):
|
||
|
if j > i:
|
||
|
residual_func = self.add_sublayer(
|
||
|
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
|
||
|
ConvBN(
|
||
|
in_channels=in_channels[j],
|
||
|
out_channels=out_channels[i],
|
||
|
kernel_size=1,
|
||
|
padding='same',
|
||
|
bias_attr=False))
|
||
|
self.residual_func_list.append(residual_func)
|
||
|
elif j < i:
|
||
|
pre_num_filters = in_channels[j]
|
||
|
for k in range(i - j):
|
||
|
if k == i - j - 1:
|
||
|
residual_func = self.add_sublayer(
|
||
|
"residual_{}_layer_{}_{}_{}".format(
|
||
|
name, i + 1, j + 1, k + 1),
|
||
|
ConvBN(
|
||
|
in_channels=pre_num_filters,
|
||
|
out_channels=out_channels[i],
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
padding='same',
|
||
|
bias_attr=False))
|
||
|
pre_num_filters = out_channels[i]
|
||
|
else:
|
||
|
residual_func = self.add_sublayer(
|
||
|
"residual_{}_layer_{}_{}_{}".format(
|
||
|
name, i + 1, j + 1, k + 1),
|
||
|
ConvBNReLU(
|
||
|
in_channels=pre_num_filters,
|
||
|
out_channels=out_channels[j],
|
||
|
kernel_size=3,
|
||
|
stride=2,
|
||
|
padding='same',
|
||
|
bias_attr=False))
|
||
|
pre_num_filters = out_channels[j]
|
||
|
self.residual_func_list.append(residual_func)
|
||
|
|
||
|
def forward(self, x):
|
||
|
outs = []
|
||
|
residual_func_idx = 0
|
||
|
for i in range(self._actual_ch):
|
||
|
residual = x[i]
|
||
|
residual_shape = residual.shape[-2:]
|
||
|
for j in range(len(self._in_channels)):
|
||
|
if j > i:
|
||
|
y = self.residual_func_list[residual_func_idx](x[j])
|
||
|
residual_func_idx += 1
|
||
|
|
||
|
y = F.interpolate(
|
||
|
y,
|
||
|
residual_shape,
|
||
|
mode='bilinear',
|
||
|
align_corners=self.align_corners)
|
||
|
residual = residual + y
|
||
|
elif j < i:
|
||
|
y = x[j]
|
||
|
for k in range(i - j):
|
||
|
y = self.residual_func_list[residual_func_idx](y)
|
||
|
residual_func_idx += 1
|
||
|
|
||
|
residual = residual + y
|
||
|
|
||
|
residual = F.relu(residual)
|
||
|
outs.append(residual)
|
||
|
|
||
|
return outs
|
||
|
|
||
|
|
||
|
def HRNet_W18_Small_V1(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[1],
|
||
|
stage1_num_channels=[32],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[2, 2],
|
||
|
stage2_num_channels=[16, 32],
|
||
|
stage3_num_modules=1,
|
||
|
stage3_num_blocks=[2, 2, 2],
|
||
|
stage3_num_channels=[16, 32, 64],
|
||
|
stage4_num_modules=1,
|
||
|
stage4_num_blocks=[2, 2, 2, 2],
|
||
|
stage4_num_channels=[16, 32, 64, 128],
|
||
|
**kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HRNet_W18_Small_V2(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[2],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[2, 2],
|
||
|
stage2_num_channels=[18, 36],
|
||
|
stage3_num_modules=1,
|
||
|
stage3_num_blocks=[2, 2, 2],
|
||
|
stage3_num_channels=[18, 36, 72],
|
||
|
stage4_num_modules=1,
|
||
|
stage4_num_blocks=[2, 2, 2, 2],
|
||
|
stage4_num_channels=[18, 36, 72, 144],
|
||
|
**kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HRNet_W18(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[4],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[4, 4],
|
||
|
stage2_num_channels=[18, 36],
|
||
|
stage3_num_modules=4,
|
||
|
stage3_num_blocks=[4, 4, 4],
|
||
|
stage3_num_channels=[18, 36, 72],
|
||
|
stage4_num_modules=3,
|
||
|
stage4_num_blocks=[4, 4, 4, 4],
|
||
|
stage4_num_channels=[18, 36, 72, 144],
|
||
|
**kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HRNet_W30(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[4],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[4, 4],
|
||
|
stage2_num_channels=[30, 60],
|
||
|
stage3_num_modules=4,
|
||
|
stage3_num_blocks=[4, 4, 4],
|
||
|
stage3_num_channels=[30, 60, 120],
|
||
|
stage4_num_modules=3,
|
||
|
stage4_num_blocks=[4, 4, 4, 4],
|
||
|
stage4_num_channels=[30, 60, 120, 240],
|
||
|
**kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HRNet_W32(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[4],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[4, 4],
|
||
|
stage2_num_channels=[32, 64],
|
||
|
stage3_num_modules=4,
|
||
|
stage3_num_blocks=[4, 4, 4],
|
||
|
stage3_num_channels=[32, 64, 128],
|
||
|
stage4_num_modules=3,
|
||
|
stage4_num_blocks=[4, 4, 4, 4],
|
||
|
stage4_num_channels=[32, 64, 128, 256],
|
||
|
**kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HRNet_W40(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[4],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[4, 4],
|
||
|
stage2_num_channels=[40, 80],
|
||
|
stage3_num_modules=4,
|
||
|
stage3_num_blocks=[4, 4, 4],
|
||
|
stage3_num_channels=[40, 80, 160],
|
||
|
stage4_num_modules=3,
|
||
|
stage4_num_blocks=[4, 4, 4, 4],
|
||
|
stage4_num_channels=[40, 80, 160, 320],
|
||
|
**kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HRNet_W44(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[4],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[4, 4],
|
||
|
stage2_num_channels=[44, 88],
|
||
|
stage3_num_modules=4,
|
||
|
stage3_num_blocks=[4, 4, 4],
|
||
|
stage3_num_channels=[44, 88, 176],
|
||
|
stage4_num_modules=3,
|
||
|
stage4_num_blocks=[4, 4, 4, 4],
|
||
|
stage4_num_channels=[44, 88, 176, 352],
|
||
|
**kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HRNet_W48(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[4],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[4, 4],
|
||
|
stage2_num_channels=[48, 96],
|
||
|
stage3_num_modules=4,
|
||
|
stage3_num_blocks=[4, 4, 4],
|
||
|
stage3_num_channels=[48, 96, 192],
|
||
|
stage4_num_modules=3,
|
||
|
stage4_num_blocks=[4, 4, 4, 4],
|
||
|
stage4_num_channels=[48, 96, 192, 384],
|
||
|
**kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HRNet_W60(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[4],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[4, 4],
|
||
|
stage2_num_channels=[60, 120],
|
||
|
stage3_num_modules=4,
|
||
|
stage3_num_blocks=[4, 4, 4],
|
||
|
stage3_num_channels=[60, 120, 240],
|
||
|
stage4_num_modules=3,
|
||
|
stage4_num_blocks=[4, 4, 4, 4],
|
||
|
stage4_num_channels=[60, 120, 240, 480],
|
||
|
**kwargs)
|
||
|
return model
|
||
|
|
||
|
|
||
|
def HRNet_W64(**kwargs):
|
||
|
model = HRNet(
|
||
|
stage1_num_modules=1,
|
||
|
stage1_num_blocks=[4],
|
||
|
stage1_num_channels=[64],
|
||
|
stage2_num_modules=1,
|
||
|
stage2_num_blocks=[4, 4],
|
||
|
stage2_num_channels=[64, 128],
|
||
|
stage3_num_modules=4,
|
||
|
stage3_num_blocks=[4, 4, 4],
|
||
|
stage3_num_channels=[64, 128, 256],
|
||
|
stage4_num_modules=3,
|
||
|
stage4_num_blocks=[4, 4, 4, 4],
|
||
|
stage4_num_channels=[64, 128, 256, 512],
|
||
|
**kwargs)
|
||
|
return model
|