|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import time
|
|
|
|
import paddle
|
|
|
|
import numbers
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from paddle.distributed import ParallelEnv
|
|
|
|
from paddle.io import DistributedBatchSampler
|
|
|
|
|
|
|
|
from .repeat_dataset import RepeatDataset
|
|
|
|
from ..utils.registry import Registry, build_from_config
|
|
|
|
|
|
|
|
DATASETS = Registry("DATASETS")
|
|
|
|
|
|
|
|
|
|
|
|
def build_dataset(cfg):
|
|
|
|
name = cfg.pop('name')
|
|
|
|
|
|
|
|
if name == 'RepeatDataset':
|
|
|
|
dataset_ = build_from_config(cfg['dataset'], DATASETS)
|
|
|
|
dataset = RepeatDataset(dataset_, cfg['times'])
|
|
|
|
else:
|
|
|
|
dataset = dataset = DATASETS.get(name)(**cfg)
|
|
|
|
|
|
|
|
return dataset
|
|
|
|
|
|
|
|
|
|
|
|
def build_dataloader(cfg, is_train=True, distributed=True):
|
|
|
|
cfg_ = cfg.copy()
|
|
|
|
|
|
|
|
batch_size = cfg_.pop('batch_size', 1)
|
|
|
|
num_workers = cfg_.pop('num_workers', 0)
|
|
|
|
use_shared_memory = cfg_.pop('use_shared_memory', True)
|
|
|
|
|
|
|
|
dataset = build_dataset(cfg_)
|
|
|
|
|
|
|
|
if distributed:
|
|
|
|
sampler = DistributedBatchSampler(
|
|
|
|
dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
shuffle=True if is_train else False,
|
|
|
|
drop_last=True if is_train else False)
|
|
|
|
|
|
|
|
dataloader = paddle.io.DataLoader(
|
|
|
|
dataset,
|
|
|
|
batch_sampler=sampler,
|
|
|
|
num_workers=num_workers,
|
|
|
|
use_shared_memory=use_shared_memory)
|
|
|
|
else:
|
|
|
|
dataloader = paddle.io.DataLoader(
|
|
|
|
dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
shuffle=True if is_train else False,
|
|
|
|
drop_last=True if is_train else False,
|
|
|
|
use_shared_memory=use_shared_memory,
|
|
|
|
num_workers=num_workers)
|
|
|
|
|
|
|
|
return dataloader
|