|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
#you may not use this file except in compliance with the License.
|
|
|
|
#You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
#See the License for the specific language governing permissions and
|
|
|
|
#limitations under the License.
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import os.path
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from .base_dataset import BaseDataset
|
|
|
|
from .image_folder import ImageFolder
|
|
|
|
|
|
|
|
from .builder import DATASETS
|
|
|
|
from .preprocess.builder import build_transforms
|
|
|
|
|
|
|
|
|
|
|
|
@DATASETS.register()
|
|
|
|
class AnimeGANV2Dataset(paddle.io.Dataset):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
dataroot,
|
|
|
|
style,
|
|
|
|
transform_real=None,
|
|
|
|
transform_anime=None,
|
|
|
|
transform_gray=None):
|
|
|
|
"""Initialize this dataset class.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataroot (dict): Directory of dataset.
|
|
|
|
|
|
|
|
"""
|
|
|
|
self.root = dataroot
|
|
|
|
self.style = style
|
|
|
|
|
|
|
|
self.transform_real = build_transforms(transform_real)
|
|
|
|
self.transform_anime = build_transforms(transform_anime)
|
|
|
|
self.transform_gray = build_transforms(transform_gray)
|
|
|
|
|
|
|
|
self.real_root = os.path.join(self.root, 'train_photo')
|
|
|
|
self.anime_root = os.path.join(self.root, f'{self.style}', 'style')
|
|
|
|
self.smooth_root = os.path.join(self.root, f'{self.style}', 'smooth')
|
|
|
|
|
|
|
|
self.real = ImageFolder(
|
|
|
|
self.real_root, transform=self.transform_real, loader=self.loader)
|
|
|
|
self.anime = ImageFolder(
|
|
|
|
self.anime_root, transform=self.transform_anime, loader=self.loader)
|
|
|
|
self.anime_gray = ImageFolder(
|
|
|
|
self.anime_root, transform=self.transform_gray, loader=self.loader)
|
|
|
|
self.smooth_gray = ImageFolder(
|
|
|
|
self.smooth_root, transform=self.transform_gray, loader=self.loader)
|
|
|
|
self.sizes = [
|
|
|
|
len(fold) for fold in [self.real, self.anime, self.smooth_gray]
|
|
|
|
]
|
|
|
|
self.size = max(self.sizes)
|
|
|
|
self.reshuffle()
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def loader(path):
|
|
|
|
return cv2.cvtColor(
|
|
|
|
cv2.imread(
|
|
|
|
path, flags=cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
def reshuffle(self):
|
|
|
|
indexs = []
|
|
|
|
for cur_size in self.sizes:
|
|
|
|
x = np.arange(0, cur_size)
|
|
|
|
np.random.shuffle(x)
|
|
|
|
if cur_size != self.size:
|
|
|
|
pad_num = self.size - cur_size
|
|
|
|
pad = np.random.choice(cur_size, pad_num, replace=True)
|
|
|
|
x = np.concatenate((x, pad))
|
|
|
|
np.random.shuffle(x)
|
|
|
|
indexs.append(x.tolist())
|
|
|
|
self.indexs = list(zip(*indexs))
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
try:
|
|
|
|
index = self.indexs.pop()
|
|
|
|
except IndexError as e:
|
|
|
|
self.reshuffle()
|
|
|
|
index = self.indexs.pop()
|
|
|
|
|
|
|
|
real_idx, anime_idx, smooth_idx = index
|
|
|
|
|
|
|
|
return {
|
|
|
|
'real': self.real[real_idx],
|
|
|
|
'anime': self.anime[anime_idx],
|
|
|
|
'anime_gray': self.anime_gray[anime_idx],
|
|
|
|
'smooth_gray': self.smooth_gray[smooth_idx]
|
|
|
|
}
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.size
|