|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
import paddle
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
from ppcls.arch import build_model
|
|
|
|
from ppcls.utils.config import parse_config, parse_args
|
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain
|
|
|
|
from ppcls.utils.logger import init_logger
|
|
|
|
from ppcls.data import create_operators
|
|
|
|
from ppcls.arch.slim import quantize_model
|
|
|
|
|
|
|
|
|
|
|
|
class GalleryLayer(paddle.nn.Layer):
|
|
|
|
def __init__(self, configs):
|
|
|
|
super().__init__()
|
|
|
|
self.configs = configs
|
|
|
|
embedding_size = self.configs["Arch"]["Head"]["embedding_size"]
|
|
|
|
self.batch_size = self.configs["IndexProcess"]["batch_size"]
|
|
|
|
self.image_shape = self.configs["Global"]["image_shape"].copy()
|
|
|
|
self.image_shape.insert(0, self.batch_size)
|
|
|
|
|
|
|
|
image_root = self.configs["IndexProcess"]["image_root"]
|
|
|
|
data_file = self.configs["IndexProcess"]["data_file"]
|
|
|
|
delimiter = self.configs["IndexProcess"]["delimiter"]
|
|
|
|
self.gallery_images = []
|
|
|
|
gallery_docs = []
|
|
|
|
gallery_labels = []
|
|
|
|
|
|
|
|
with open(data_file, 'r', encoding='utf-8') as f:
|
|
|
|
lines = f.readlines()
|
|
|
|
for ori_line in lines:
|
|
|
|
line = ori_line.strip().split(delimiter)
|
|
|
|
text_num = len(line)
|
|
|
|
assert text_num >= 2, f"line({ori_line}) must be splitted into at least 2 parts, but got {text_num}"
|
|
|
|
image_file = os.path.join(image_root, line[0])
|
|
|
|
|
|
|
|
self.gallery_images.append(image_file)
|
|
|
|
gallery_docs.append(ori_line.strip())
|
|
|
|
gallery_labels.append(line[1].strip())
|
|
|
|
self.gallery_layer = paddle.nn.Linear(
|
|
|
|
embedding_size, len(self.gallery_images), bias_attr=False)
|
|
|
|
self.gallery_layer.skip_quant = True
|
|
|
|
output_label_str = ""
|
|
|
|
for i, label_i in enumerate(gallery_labels):
|
|
|
|
output_label_str += "{} {}\n".format(i, label_i)
|
|
|
|
output_path = configs["Global"]["save_inference_dir"] + "_label.txt"
|
|
|
|
with open(output_path, "w") as f:
|
|
|
|
f.write(output_label_str)
|
|
|
|
|
|
|
|
def forward(self, x, label=None):
|
|
|
|
x = paddle.nn.functional.normalize(x)
|
|
|
|
x = self.gallery_layer(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def build_gallery_layer(self, feature_extractor):
|
|
|
|
transform_configs = self.configs["IndexProcess"]["transform_ops"]
|
|
|
|
preprocess_ops = create_operators(transform_configs)
|
|
|
|
embedding_size = self.configs["Arch"]["Head"]["embedding_size"]
|
|
|
|
batch_index = 0
|
|
|
|
input_tensor = paddle.zeros(self.image_shape)
|
|
|
|
gallery_feature = paddle.zeros(
|
|
|
|
(len(self.gallery_images), embedding_size))
|
|
|
|
for i, image_path in enumerate(self.gallery_images):
|
|
|
|
image = cv2.imread(image_path)[:, :, ::-1]
|
|
|
|
for op in preprocess_ops:
|
|
|
|
image = op(image)
|
|
|
|
input_tensor[batch_index] = image
|
|
|
|
batch_index += 1
|
|
|
|
if batch_index == self.batch_size or i == len(
|
|
|
|
self.gallery_images) - 1:
|
|
|
|
batch_feature = feature_extractor(input_tensor)["features"]
|
|
|
|
for j in range(batch_index):
|
|
|
|
feature = batch_feature[j]
|
|
|
|
norm_feature = paddle.nn.functional.normalize(
|
|
|
|
feature, axis=0)
|
|
|
|
gallery_feature[i - batch_index + j + 1] = norm_feature
|
|
|
|
self.gallery_layer.set_state_dict({"_layer.weight": gallery_feature.T})
|
|
|
|
|
|
|
|
|
|
|
|
def export_fuse_model(configs):
|
|
|
|
slim_config = configs["Slim"].copy()
|
|
|
|
configs["Slim"] = None
|
|
|
|
fuse_model = build_model(configs)
|
|
|
|
fuse_model.head = GalleryLayer(configs)
|
|
|
|
configs["Slim"] = slim_config
|
|
|
|
quantize_model(configs, fuse_model)
|
|
|
|
load_dygraph_pretrain(fuse_model, configs["Global"]["pretrained_model"])
|
|
|
|
fuse_model.eval()
|
|
|
|
fuse_model.head.build_gallery_layer(fuse_model)
|
|
|
|
save_path = configs["Global"]["save_inference_dir"]
|
|
|
|
fuse_model.quanter.save_quantized_model(
|
|
|
|
fuse_model,
|
|
|
|
save_path,
|
|
|
|
input_spec=[
|
|
|
|
paddle.static.InputSpec(
|
|
|
|
shape=[None] + configs["Global"]["image_shape"],
|
|
|
|
dtype='float32')
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
|
|
configs = parse_config(args.config)
|
|
|
|
init_logger(name='gallery2fc')
|
|
|
|
export_fuse_model(configs)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|