You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
99 lines
4.0 KiB
99 lines
4.0 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os
|
||
|
|
||
|
from paddlers.models.ppseg.utils.download import download_file_and_uncompress
|
||
|
from paddlers.models.ppseg.utils import seg_env
|
||
|
from paddlers.models.ppseg.cvlibs import manager
|
||
|
from paddlers.models.ppseg.transforms import Compose
|
||
|
from paddlers.models.ppseg.datasets import Dataset
|
||
|
|
||
|
URL = 'https://bj.bcebos.com/paddleseg/dataset/chase_db1/chase_db1.zip'
|
||
|
|
||
|
|
||
|
@manager.DATASETS.add_component
|
||
|
class CHASEDB1(Dataset):
|
||
|
"""
|
||
|
CHASE_DB1 dataset is a dataset for retinal vessel segmentation
|
||
|
which contains 28 color retina images with the size of 999×960 pixels.
|
||
|
It is collected from both left and right eyes of 14 school children.
|
||
|
Each image is annotated by two independent human experts, and we choose the labels from 1st expert.
|
||
|
(https://blogs.kingston.ac.uk/retinal/chasedb1/)
|
||
|
|
||
|
Args:
|
||
|
transforms (list): Transforms for image.
|
||
|
dataset_root (str): The dataset directory. Default: None
|
||
|
edge (bool): whether extract edge infor in the output
|
||
|
mode (str, optional): Which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'.
|
||
|
"""
|
||
|
NUM_CLASSES = 2
|
||
|
|
||
|
def __init__(self,
|
||
|
dataset_root=None,
|
||
|
transforms=None,
|
||
|
edge=False,
|
||
|
mode='train'):
|
||
|
self.dataset_root = dataset_root
|
||
|
self.transforms = Compose(transforms)
|
||
|
mode = mode.lower()
|
||
|
self.mode = mode
|
||
|
self.edge = edge
|
||
|
self.file_list = list()
|
||
|
self.num_classes = self.NUM_CLASSES
|
||
|
self.ignore_index = 255 # labels only have 1/0, thus ignore_index is not necessary
|
||
|
|
||
|
if mode not in ['train', 'val', 'test']:
|
||
|
raise ValueError(
|
||
|
"`mode` should be 'train', 'val' or 'test', but got {}.".format(
|
||
|
mode))
|
||
|
|
||
|
if self.transforms is None:
|
||
|
raise ValueError("`transforms` is necessary, but it is None.")
|
||
|
|
||
|
if self.dataset_root is None:
|
||
|
self.dataset_root = download_file_and_uncompress(
|
||
|
url=URL,
|
||
|
savepath=seg_env.DATA_HOME,
|
||
|
extrapath=seg_env.DATA_HOME)
|
||
|
elif not os.path.exists(self.dataset_root):
|
||
|
self.dataset_root = os.path.normpath(self.dataset_root)
|
||
|
savepath, extraname = self.dataset_root.rsplit(
|
||
|
sep=os.path.sep, maxsplit=1)
|
||
|
self.dataset_root = download_file_and_uncompress(
|
||
|
url=URL,
|
||
|
savepath=savepath,
|
||
|
extrapath=savepath,
|
||
|
extraname=extraname)
|
||
|
|
||
|
if mode == 'train':
|
||
|
file_path = os.path.join(self.dataset_root, 'train_list.txt')
|
||
|
elif mode == 'val':
|
||
|
file_path = os.path.join(self.dataset_root, 'val_list.txt')
|
||
|
|
||
|
with open(file_path, 'r') as f:
|
||
|
for line in f:
|
||
|
items = line.strip().split()
|
||
|
if len(items) != 2:
|
||
|
if mode == 'train' or mode == 'val':
|
||
|
raise Exception(
|
||
|
"File list format incorrect! It should be"
|
||
|
" image_name label_name\\n")
|
||
|
image_path = os.path.join(self.dataset_root, items[0])
|
||
|
grt_path = None
|
||
|
else:
|
||
|
image_path = os.path.join(self.dataset_root, items[0])
|
||
|
grt_path = os.path.join(self.dataset_root, items[1])
|
||
|
self.file_list.append([image_path, grt_path])
|