You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
79 lines
2.7 KiB
79 lines
2.7 KiB
3 years ago
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
import paddle
|
||
|
from .comfunc import rerange_index
|
||
|
|
||
|
|
||
|
class MSMLoss(paddle.nn.Layer):
|
||
|
"""
|
||
|
MSMLoss Loss, based on triplet loss. USE P * K samples.
|
||
|
the batch size is fixed. Batch_size = P * K; but the K may vary between batches.
|
||
|
same label gather together
|
||
|
|
||
|
supported_metrics = [
|
||
|
'euclidean',
|
||
|
'sqeuclidean',
|
||
|
'cityblock',
|
||
|
]
|
||
|
only consider samples_each_class = 2
|
||
|
"""
|
||
|
|
||
|
def __init__(self, batch_size=120, samples_each_class=2, margin=0.1):
|
||
|
super(MSMLoss, self).__init__()
|
||
|
self.margin = margin
|
||
|
self.samples_each_class = samples_each_class
|
||
|
self.batch_size = batch_size
|
||
|
self.rerange_index = rerange_index(batch_size, samples_each_class)
|
||
|
|
||
|
def forward(self, input, target=None):
|
||
|
#normalization
|
||
|
features = input["features"]
|
||
|
features = self._nomalize(features)
|
||
|
samples_each_class = self.samples_each_class
|
||
|
rerange_index = paddle.to_tensor(self.rerange_index)
|
||
|
|
||
|
#calc sm
|
||
|
diffs = paddle.unsqueeze(
|
||
|
features, axis=1) - paddle.unsqueeze(
|
||
|
features, axis=0)
|
||
|
similary_matrix = paddle.sum(paddle.square(diffs), axis=-1)
|
||
|
|
||
|
#rerange
|
||
|
tmp = paddle.reshape(similary_matrix, shape=[-1, 1])
|
||
|
tmp = paddle.gather(tmp, index=rerange_index)
|
||
|
similary_matrix = paddle.reshape(tmp, shape=[-1, self.batch_size])
|
||
|
|
||
|
#split
|
||
|
ignore, pos, neg = paddle.split(
|
||
|
similary_matrix,
|
||
|
num_or_sections=[1, samples_each_class - 1, -1],
|
||
|
axis=1)
|
||
|
ignore.stop_gradient = True
|
||
|
|
||
|
hard_pos = paddle.max(pos)
|
||
|
hard_neg = paddle.min(neg)
|
||
|
|
||
|
loss = hard_pos + self.margin - hard_neg
|
||
|
loss = paddle.nn.ReLU()(loss)
|
||
|
return {"msmloss": loss}
|
||
|
|
||
|
def _nomalize(self, input):
|
||
|
input_norm = paddle.sqrt(
|
||
|
paddle.sum(paddle.square(input), axis=1, keepdim=True))
|
||
|
return paddle.divide(input, input_norm)
|