You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
1.9 KiB
55 lines
1.9 KiB
3 years ago
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
|
||
|
|
||
|
class CenterLoss(nn.Layer):
|
||
|
def __init__(self, num_classes=5013, feat_dim=2048):
|
||
|
super(CenterLoss, self).__init__()
|
||
|
self.num_classes = num_classes
|
||
|
self.feat_dim = feat_dim
|
||
|
self.centers = paddle.randn(
|
||
|
shape=[self.num_classes, self.feat_dim]).astype(
|
||
|
"float64") #random center
|
||
|
|
||
|
def __call__(self, input, target):
|
||
|
"""
|
||
|
inputs: network output: {"features: xxx", "logits": xxxx}
|
||
|
target: image label
|
||
|
"""
|
||
|
feats = input["features"]
|
||
|
labels = target
|
||
|
batch_size = feats.shape[0]
|
||
|
|
||
|
#calc feat * feat
|
||
|
dist1 = paddle.sum(paddle.square(feats), axis=1, keepdim=True)
|
||
|
dist1 = paddle.expand(dist1, [batch_size, self.num_classes])
|
||
|
|
||
|
#dist2 of centers
|
||
|
dist2 = paddle.sum(paddle.square(self.centers), axis=1,
|
||
|
keepdim=True) #num_classes
|
||
|
dist2 = paddle.expand(dist2,
|
||
|
[self.num_classes, batch_size]).astype("float64")
|
||
|
dist2 = paddle.transpose(dist2, [1, 0])
|
||
|
|
||
|
#first x * x + y * y
|
||
|
distmat = paddle.add(dist1, dist2)
|
||
|
tmp = paddle.matmul(feats, paddle.transpose(self.centers, [1, 0]))
|
||
|
distmat = distmat - 2.0 * tmp
|
||
|
|
||
|
#generate the mask
|
||
|
classes = paddle.arange(self.num_classes).astype("int64")
|
||
|
labels = paddle.expand(
|
||
|
paddle.unsqueeze(labels, 1), (batch_size, self.num_classes))
|
||
|
mask = paddle.equal(
|
||
|
paddle.expand(classes, [batch_size, self.num_classes]),
|
||
|
labels).astype("float64") #get mask
|
||
|
|
||
|
dist = paddle.multiply(distmat, mask)
|
||
|
loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size
|
||
|
|
||
|
return {'CenterLoss': loss}
|