|
|
|
#!/usr/bin/env python
|
|
|
|
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
import argparse
|
|
|
|
from operator import itemgetter
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle.inference import Config
|
|
|
|
from paddle.inference import create_predictor
|
|
|
|
from paddle.inference import PrecisionType
|
|
|
|
from paddlers.tasks import load_model
|
|
|
|
from paddlers.utils import logging
|
|
|
|
|
|
|
|
from config_utils import parse_configs
|
|
|
|
|
|
|
|
|
|
|
|
class _bool(object):
|
|
|
|
def __new__(cls, x):
|
|
|
|
if isinstance(x, str):
|
|
|
|
if x.lower() == 'false':
|
|
|
|
return False
|
|
|
|
elif x.lower() == 'true':
|
|
|
|
return True
|
|
|
|
return bool.__new__(x)
|
|
|
|
|
|
|
|
|
|
|
|
class TIPCPredictor(object):
|
|
|
|
def __init__(self,
|
|
|
|
model_dir,
|
|
|
|
device='cpu',
|
|
|
|
gpu_id=0,
|
|
|
|
cpu_thread_num=1,
|
|
|
|
use_mkl=True,
|
|
|
|
mkl_thread_num=4,
|
|
|
|
use_trt=False,
|
|
|
|
memory_optimize=True,
|
|
|
|
trt_precision_mode='fp32',
|
|
|
|
benchmark=False,
|
|
|
|
model_name='',
|
|
|
|
batch_size=1):
|
|
|
|
self.model_dir = model_dir
|
|
|
|
self._model = load_model(model_dir, with_net=False)
|
|
|
|
|
|
|
|
if trt_precision_mode.lower() == 'fp32':
|
|
|
|
trt_precision_mode = PrecisionType.Float32
|
|
|
|
elif trt_precision_mode.lower() == 'fp16':
|
|
|
|
trt_precision_mode = PrecisionType.Float16
|
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
"TensorRT precision mode {} is invalid. Supported modes are fp32 and fp16."
|
|
|
|
.format(trt_precision_mode),
|
|
|
|
exit=True)
|
|
|
|
|
|
|
|
self.config = self.get_config(
|
|
|
|
device=device,
|
|
|
|
gpu_id=gpu_id,
|
|
|
|
cpu_thread_num=cpu_thread_num,
|
|
|
|
use_mkl=use_mkl,
|
|
|
|
mkl_thread_num=mkl_thread_num,
|
|
|
|
use_trt=use_trt,
|
|
|
|
use_glog=False,
|
|
|
|
memory_optimize=memory_optimize,
|
|
|
|
max_trt_batch_size=1,
|
|
|
|
trt_precision_mode=trt_precision_mode)
|
|
|
|
self.predictor = create_predictor(self.config)
|
|
|
|
|
|
|
|
self.batch_size = batch_size
|
|
|
|
|
|
|
|
if benchmark:
|
|
|
|
import auto_log
|
|
|
|
pid = os.getpid()
|
|
|
|
self.autolog = auto_log.AutoLogger(
|
|
|
|
model_name=model_name,
|
|
|
|
model_precision=trt_precision_mode,
|
|
|
|
batch_size=batch_size,
|
|
|
|
data_shape='dynamic',
|
|
|
|
save_path=None,
|
|
|
|
inference_config=self.config,
|
|
|
|
pids=pid,
|
|
|
|
process_name=None,
|
|
|
|
gpu_ids=0,
|
|
|
|
time_keys=[
|
|
|
|
'preprocess_time', 'inference_time', 'postprocess_time'
|
|
|
|
],
|
|
|
|
warmup=0,
|
|
|
|
logger=logging)
|
|
|
|
self.benchmark = benchmark
|
|
|
|
|
|
|
|
def get_config(self, device, gpu_id, cpu_thread_num, use_mkl,
|
|
|
|
mkl_thread_num, use_trt, use_glog, memory_optimize,
|
|
|
|
max_trt_batch_size, trt_precision_mode):
|
|
|
|
config = Config(
|
|
|
|
osp.join(self.model_dir, 'model.pdmodel'),
|
|
|
|
osp.join(self.model_dir, 'model.pdiparams'))
|
|
|
|
|
|
|
|
if device == 'gpu':
|
|
|
|
config.enable_use_gpu(200, gpu_id)
|
|
|
|
config.switch_ir_optim(True)
|
|
|
|
if use_trt:
|
|
|
|
if self._model.model_type == 'segmenter':
|
|
|
|
logging.warning(
|
|
|
|
"Semantic segmentation models do not support TensorRT acceleration, "
|
|
|
|
"TensorRT is forcibly disabled.")
|
|
|
|
elif self._model.model_type == 'detector' and 'RCNN' in self._model.__class__.__name__:
|
|
|
|
logging.warning(
|
|
|
|
"RCNN models do not support TensorRT acceleration, "
|
|
|
|
"TensorRT is forcibly disabled.")
|
|
|
|
else:
|
|
|
|
config.enable_tensorrt_engine(
|
|
|
|
workspace_size=1 << 10,
|
|
|
|
max_batch_size=max_trt_batch_size,
|
|
|
|
min_subgraph_size=3,
|
|
|
|
precision_mode=trt_precision_mode,
|
|
|
|
use_static=False,
|
|
|
|
use_calib_mode=False)
|
|
|
|
else:
|
|
|
|
config.disable_gpu()
|
|
|
|
config.set_cpu_math_library_num_threads(cpu_thread_num)
|
|
|
|
if use_mkl:
|
|
|
|
if self._model.__class__.__name__ == 'MaskRCNN':
|
|
|
|
logging.warning(
|
|
|
|
"MaskRCNN does not support MKL-DNN, MKL-DNN is forcibly disabled"
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
# Cache 10 different shapes for mkldnn to avoid memory leak.
|
|
|
|
config.set_mkldnn_cache_capacity(10)
|
|
|
|
config.enable_mkldnn()
|
|
|
|
config.set_cpu_math_library_num_threads(mkl_thread_num)
|
|
|
|
except Exception as e:
|
|
|
|
logging.warning(
|
|
|
|
"The current environment does not support MKL-DNN, MKL-DNN is disabled."
|
|
|
|
)
|
|
|
|
pass
|
|
|
|
|
|
|
|
if not use_glog:
|
|
|
|
config.disable_glog_info()
|
|
|
|
if memory_optimize:
|
|
|
|
config.enable_memory_optim()
|
|
|
|
config.switch_use_feed_fetch_ops(False)
|
|
|
|
return config
|
|
|
|
|
|
|
|
def preprocess(self, images, transforms):
|
|
|
|
preprocessed_samples = self._model.preprocess(
|
|
|
|
images, transforms, to_tensor=False)
|
|
|
|
if self._model.model_type == 'classifier':
|
|
|
|
preprocessed_samples = {'image': preprocessed_samples[0]}
|
|
|
|
elif self._model.model_type == 'segmenter':
|
|
|
|
preprocessed_samples = {
|
|
|
|
'image': preprocessed_samples[0],
|
|
|
|
'ori_shape': preprocessed_samples[1]
|
|
|
|
}
|
|
|
|
elif self._model.model_type == 'detector':
|
|
|
|
pass
|
|
|
|
elif self._model.model_type == 'change_detector':
|
|
|
|
preprocessed_samples = {
|
|
|
|
'image': preprocessed_samples[0],
|
|
|
|
'image2': preprocessed_samples[1],
|
|
|
|
'ori_shape': preprocessed_samples[2]
|
|
|
|
}
|
|
|
|
elif self._model.model_type == 'restorer':
|
|
|
|
preprocessed_samples = {
|
|
|
|
'image': preprocessed_samples[0],
|
|
|
|
'tar_shape': preprocessed_samples[1]
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
"Invalid model type {}".format(self._model.model_type),
|
|
|
|
exit=True)
|
|
|
|
return preprocessed_samples
|
|
|
|
|
|
|
|
def postprocess(self,
|
|
|
|
net_outputs,
|
|
|
|
topk=1,
|
|
|
|
ori_shape=None,
|
|
|
|
tar_shape=None,
|
|
|
|
transforms=None):
|
|
|
|
if self._model.model_type == 'classifier':
|
|
|
|
true_topk = min(self._model.num_classes, topk)
|
|
|
|
if self._model.postprocess is None:
|
|
|
|
self._model.build_postprocess_from_labels(topk)
|
|
|
|
# XXX: Convert ndarray to tensor as self._model.postprocess requires
|
|
|
|
assert len(net_outputs) == 1
|
|
|
|
net_outputs = paddle.to_tensor(net_outputs[0])
|
|
|
|
outputs = self._model.postprocess(net_outputs)
|
|
|
|
class_ids = map(itemgetter('class_ids'), outputs)
|
|
|
|
scores = map(itemgetter('scores'), outputs)
|
|
|
|
label_names = map(itemgetter('label_names'), outputs)
|
|
|
|
preds = [{
|
|
|
|
'class_ids_map': l,
|
|
|
|
'scores_map': s,
|
|
|
|
'label_names_map': n,
|
|
|
|
} for l, s, n in zip(class_ids, scores, label_names)]
|
|
|
|
elif self._model.model_type in ('segmenter', 'change_detector'):
|
|
|
|
label_map, score_map = self._model.postprocess(
|
|
|
|
net_outputs,
|
|
|
|
batch_origin_shape=ori_shape,
|
|
|
|
transforms=transforms.transforms)
|
|
|
|
preds = [{
|
|
|
|
'label_map': l,
|
|
|
|
'score_map': s
|
|
|
|
} for l, s in zip(label_map, score_map)]
|
|
|
|
elif self._model.model_type == 'detector':
|
|
|
|
net_outputs = {
|
|
|
|
k: v
|
|
|
|
for k, v in zip(['bbox', 'bbox_num', 'mask'], net_outputs)
|
|
|
|
}
|
|
|
|
preds = self._model.postprocess(net_outputs)
|
|
|
|
elif self._model.model_type == 'restorer':
|
|
|
|
res_maps = self._model.postprocess(
|
|
|
|
net_outputs[0],
|
|
|
|
batch_tar_shape=tar_shape,
|
|
|
|
transforms=transforms.transforms)
|
|
|
|
preds = [{'res_map': res_map} for res_map in res_maps]
|
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
"Invalid model type {}.".format(self._model.model_type),
|
|
|
|
exit=True)
|
|
|
|
|
|
|
|
return preds
|
|
|
|
|
|
|
|
def _run(self, images, topk=1, transforms=None, time_it=False):
|
|
|
|
if self.benchmark and time_it:
|
|
|
|
self.autolog.times.start()
|
|
|
|
|
|
|
|
preprocessed_input = self.preprocess(images, transforms)
|
|
|
|
|
|
|
|
input_names = self.predictor.get_input_names()
|
|
|
|
for name in input_names:
|
|
|
|
input_tensor = self.predictor.get_input_handle(name)
|
|
|
|
input_tensor.copy_from_cpu(preprocessed_input[name])
|
|
|
|
|
|
|
|
if self.benchmark and time_it:
|
|
|
|
self.autolog.times.stamp()
|
|
|
|
|
|
|
|
self.predictor.run()
|
|
|
|
|
|
|
|
output_names = self.predictor.get_output_names()
|
|
|
|
net_outputs = []
|
|
|
|
for name in output_names:
|
|
|
|
output_tensor = self.predictor.get_output_handle(name)
|
|
|
|
net_outputs.append(output_tensor.copy_to_cpu())
|
|
|
|
|
|
|
|
if self.benchmark and time_it:
|
|
|
|
self.autolog.times.stamp()
|
|
|
|
|
|
|
|
res = self.postprocess(
|
|
|
|
net_outputs,
|
|
|
|
topk,
|
|
|
|
ori_shape=preprocessed_input.get('ori_shape', None),
|
|
|
|
tar_shape=preprocessed_input.get('tar_shape', None),
|
|
|
|
transforms=transforms)
|
|
|
|
|
|
|
|
if self.benchmark and time_it:
|
|
|
|
self.autolog.times.end(stamp=True)
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
def predict(self, data_dir, file_list, topk=1, warmup_iters=5):
|
|
|
|
transforms = self._model.test_transforms
|
|
|
|
|
|
|
|
# Warm up
|
|
|
|
iters = 0
|
|
|
|
while True:
|
|
|
|
for images in self._parse_lines(data_dir, file_list):
|
|
|
|
if iters >= warmup_iters:
|
|
|
|
break
|
|
|
|
self._run(
|
|
|
|
images=images,
|
|
|
|
topk=topk,
|
|
|
|
transforms=transforms,
|
|
|
|
time_it=False)
|
|
|
|
iters += 1
|
|
|
|
else:
|
|
|
|
continue
|
|
|
|
break
|
|
|
|
|
|
|
|
results = []
|
|
|
|
for images in self._parse_lines(data_dir, file_list):
|
|
|
|
res = self._run(
|
|
|
|
images=images, topk=topk, transforms=transforms, time_it=True)
|
|
|
|
results.append(res)
|
|
|
|
return results
|
|
|
|
|
|
|
|
def _parse_lines(self, data_dir, file_list):
|
|
|
|
with open(file_list, 'r') as f:
|
|
|
|
batch = []
|
|
|
|
for line in f:
|
|
|
|
items = line.strip().split()
|
|
|
|
items = [osp.join(data_dir, item) for item in items]
|
|
|
|
if self._model.model_type == 'change_detector':
|
|
|
|
batch.append((items[0], items[1]))
|
|
|
|
else:
|
|
|
|
batch.append(items[0])
|
|
|
|
if len(batch) == self.batch_size:
|
|
|
|
yield batch
|
|
|
|
batch.clear()
|
|
|
|
if 0 < len(batch) < self.batch_size:
|
|
|
|
yield batch
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
|
|
|
parser.add_argument('--config', type=str)
|
|
|
|
parser.add_argument('--inherit_off', action='store_true')
|
|
|
|
parser.add_argument('--model_dir', type=str, default='./')
|
|
|
|
parser.add_argument(
|
|
|
|
'--device', type=str, choices=['cpu', 'gpu'], default='cpu')
|
|
|
|
parser.add_argument('--enable_mkldnn', type=_bool, default=False)
|
|
|
|
parser.add_argument('--cpu_threads', type=int, default=10)
|
|
|
|
parser.add_argument('--use_trt', type=_bool, default=False)
|
|
|
|
parser.add_argument(
|
|
|
|
'--precision', type=str, choices=['fp32', 'fp16'], default='fp16')
|
|
|
|
parser.add_argument('--batch_size', type=int, default=1)
|
|
|
|
parser.add_argument('--benchmark', type=_bool, default=False)
|
|
|
|
parser.add_argument('--model_name', type=str, default='')
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
cfg = parse_configs(args.config, not args.inherit_off)
|
|
|
|
eval_dataset = cfg['datasets']['eval']
|
|
|
|
data_dir = eval_dataset.args['data_dir']
|
|
|
|
file_list = eval_dataset.args['file_list']
|
|
|
|
|
|
|
|
predictor = TIPCPredictor(
|
|
|
|
args.model_dir,
|
|
|
|
device=args.device,
|
|
|
|
cpu_thread_num=args.cpu_threads,
|
|
|
|
use_mkl=args.enable_mkldnn,
|
|
|
|
mkl_thread_num=args.cpu_threads,
|
|
|
|
use_trt=args.use_trt,
|
|
|
|
trt_precision_mode=args.precision,
|
|
|
|
benchmark=args.benchmark)
|
|
|
|
|
|
|
|
predictor.predict(data_dir, file_list)
|
|
|
|
|
|
|
|
if args.benchmark:
|
|
|
|
predictor.autolog.report()
|