You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

922 lines
38 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import os.path as osp
3 years ago
from collections import OrderedDict
import numpy as np
import cv2
import paddle
import paddle.nn.functional as F
from paddle.static import InputSpec
3 years ago
import paddlers
import paddlers.models.ppseg as ppseg
import paddlers.rs_models.seg as cmseg
import paddlers.utils.logging as logging
from paddlers.models import seg_losses
2 years ago
from paddlers.transforms import Resize, decode_image
from paddlers.utils import get_single_card_bs, DisablePrint
from paddlers.utils.checkpoint import seg_pretrain_weights_dict
from .base import BaseModel
from .utils import seg_metrics as metrics
from .utils.infer_nets import InferNet
__all__ = ["UNet", "DeepLabV3P", "FastSCNN", "HRNet", "BiSeNetV2", "FarSeg"]
class BaseSegmenter(BaseModel):
def __init__(self,
model_name,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
self.init_params = locals()
if 'with_net' in self.init_params:
del self.init_params['with_net']
super(BaseSegmenter, self).__init__('segmenter')
if not hasattr(ppseg.models, model_name) and \
not hasattr(cmseg, model_name):
2 years ago
raise ValueError("ERROR: There is no model named {}.".format(
model_name))
self.model_name = model_name
self.num_classes = num_classes
self.use_mixed_loss = use_mixed_loss
self.losses = losses
self.labels = None
if params.get('with_net', True):
params.pop('with_net', None)
self.net = self.build_net(**params)
self.find_unused_parameters = True
def build_net(self, **params):
# TODO: when using paddle.utils.unique_name.guard,
# DeepLabv3p and HRNet will raise an error.
net = dict(ppseg.models.__dict__, **cmseg.__dict__)[self.model_name](
num_classes=self.num_classes, **params)
return net
def _build_inference_net(self):
infer_net = InferNet(self.net, self.model_type)
infer_net.eval()
return infer_net
def _fix_transforms_shape(self, image_shape):
if hasattr(self, 'test_transforms'):
if self.test_transforms is not None:
has_resize_op = False
resize_op_idx = -1
normalize_op_idx = len(self.test_transforms.transforms)
for idx, op in enumerate(self.test_transforms.transforms):
name = op.__class__.__name__
if name == 'Normalize':
normalize_op_idx = idx
if 'Resize' in name:
has_resize_op = True
resize_op_idx = idx
if not has_resize_op:
self.test_transforms.transforms.insert(
normalize_op_idx, Resize(target_size=image_shape))
else:
self.test_transforms.transforms[resize_op_idx] = Resize(
target_size=image_shape)
def _get_test_inputs(self, image_shape):
if image_shape is not None:
if len(image_shape) == 2:
image_shape = [1, 3] + image_shape
self._fix_transforms_shape(image_shape[-2:])
else:
image_shape = [None, 3, -1, -1]
self.fixed_input_shape = image_shape
input_spec = [
InputSpec(
shape=image_shape, name='image', dtype='float32')
]
return input_spec
def run(self, net, inputs, mode):
net_out = net(inputs[0])
logit = net_out[0]
outputs = OrderedDict()
if mode == 'test':
origin_shape = inputs[1]
if self.status == 'Infer':
label_map_list, score_map_list = self._postprocess(
net_out, origin_shape, transforms=inputs[2])
else:
logit_list = self._postprocess(
logit, origin_shape, transforms=inputs[2])
label_map_list = []
score_map_list = []
for logit in logit_list:
logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC
label_map_list.append(
paddle.argmax(
logit, axis=-1, keepdim=False, dtype='int32')
.squeeze().numpy())
score_map_list.append(
F.softmax(
logit, axis=-1).squeeze().numpy().astype('float32'))
outputs['label_map'] = label_map_list
outputs['score_map'] = score_map_list
if mode == 'eval':
if self.status == 'Infer':
pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW
else:
pred = paddle.argmax(logit, axis=1, keepdim=True, dtype='int32')
label = inputs[1]
2 years ago
if label.ndim == 3:
paddle.unsqueeze_(label, axis=1)
if label.ndim != 4:
raise ValueError("Expected label.ndim == 4 but got {}".format(
label.ndim))
origin_shape = [label.shape[-2:]]
pred = self._postprocess(
pred, origin_shape, transforms=inputs[2])[0] # NCHW
intersect_area, pred_area, label_area = ppseg.utils.metrics.calculate_area(
pred, label, self.num_classes)
outputs['intersect_area'] = intersect_area
outputs['pred_area'] = pred_area
outputs['label_area'] = label_area
outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
self.num_classes)
if mode == 'train':
loss_list = metrics.loss_computation(
logits_list=net_out, labels=inputs[1], losses=self.losses)
loss = sum(loss_list)
outputs['loss'] = loss
return outputs
def default_loss(self):
if isinstance(self.use_mixed_loss, bool):
if self.use_mixed_loss:
losses = [
seg_losses.CrossEntropyLoss(),
seg_losses.LovaszSoftmaxLoss()
]
coef = [.8, .2]
loss_type = [seg_losses.MixedLoss(losses=losses, coef=coef), ]
else:
loss_type = [seg_losses.CrossEntropyLoss()]
else:
losses, coef = list(zip(*self.use_mixed_loss))
if not set(losses).issubset(
['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
raise ValueError(
"Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
)
losses = [getattr(seg_losses, loss)() for loss in losses]
loss_type = [seg_losses.MixedLoss(losses=losses, coef=list(coef))]
if self.model_name == 'FastSCNN':
loss_type *= 2
loss_coef = [1.0, 0.4]
elif self.model_name == 'BiSeNetV2':
loss_type *= 5
loss_coef = [1.0] * 5
else:
loss_coef = [1.0]
losses = {'types': loss_type, 'coef': loss_coef}
return losses
def default_optimizer(self,
parameters,
learning_rate,
num_epochs,
num_steps_each_epoch,
lr_decay_power=0.9):
decay_step = num_epochs * num_steps_each_epoch
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate, decay_step, end_lr=0, power=lr_decay_power)
optimizer = paddle.optimizer.Momentum(
learning_rate=lr_scheduler,
parameters=parameters,
momentum=0.9,
weight_decay=4e-5)
return optimizer
def train(self,
num_epochs,
train_dataset,
train_batch_size=2,
eval_dataset=None,
optimizer=None,
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
pretrain_weights='CITYSCAPES',
learning_rate=0.01,
lr_decay_power=0.9,
early_stop=False,
early_stop_patience=5,
use_vdl=True,
resume_checkpoint=None):
"""
Train the model.
Args:
num_epochs (int): Number of epochs.
train_dataset (paddlers.datasets.SegDataset): Training dataset.
train_batch_size (int, optional): Total batch size among all cards used in
training. Defaults to 2.
eval_dataset (paddlers.datasets.SegDataset|None, optional): Evaluation dataset.
If None, the model will not be evaluated during training process.
Defaults to None.
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
training. If None, a default optimizer will be used. Defaults to None.
save_interval_epochs (int, optional): Epoch interval for saving the model.
Defaults to 1.
log_interval_steps (int, optional): Step interval for printing training
information. Defaults to 2.
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
pretrain_weights (str|None, optional): None or name/path of pretrained
weights. If None, no pretrained weights will be loaded.
Defaults to 'CITYSCAPES'.
2 years ago
learning_rate (float, optional): Learning rate for training. Defaults to .01.
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
early_stop (bool, optional): Whether to adopt early stop strategy. Defaults
to False.
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
process. Defaults to True.
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
training from. If None, no training checkpoint will be resumed. At most
Aone of `resume_checkpoint` and `pretrain_weights` can be set simultaneously.
Defaults to None.
"""
if self.status == 'Infer':
logging.error(
"Exported inference model does not support training.",
exit=True)
if pretrain_weights is not None and resume_checkpoint is not None:
logging.error(
"pretrain_weights and resume_checkpoint cannot be set simultaneously.",
exit=True)
self.labels = train_dataset.labels
if self.losses is None:
self.losses = self.default_loss()
if optimizer is None:
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
self.optimizer = self.default_optimizer(
self.net.parameters(), learning_rate, num_epochs,
num_steps_each_epoch, lr_decay_power)
else:
self.optimizer = optimizer
if pretrain_weights is not None and not osp.exists(pretrain_weights):
if pretrain_weights not in seg_pretrain_weights_dict[
self.model_name]:
logging.warning(
"Path of pretrain_weights('{}') does not exist!".format(
pretrain_weights))
logging.warning("Pretrain_weights is forcibly set to '{}'. "
"If don't want to use pretrain weights, "
"set pretrain_weights to be None.".format(
seg_pretrain_weights_dict[self.model_name][
0]))
pretrain_weights = seg_pretrain_weights_dict[self.model_name][0]
elif pretrain_weights is not None and osp.exists(pretrain_weights):
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
logging.error(
"Invalid pretrain weights. Please specify a '.pdparams' file.",
exit=True)
pretrained_dir = osp.join(save_dir, 'pretrain')
is_backbone_weights = pretrain_weights == 'IMAGENET'
self.net_initialize(
pretrain_weights=pretrain_weights,
save_dir=pretrained_dir,
resume_checkpoint=resume_checkpoint,
is_backbone_weights=is_backbone_weights)
self.train_loop(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
early_stop=early_stop,
early_stop_patience=early_stop_patience,
use_vdl=use_vdl)
def quant_aware_train(self,
num_epochs,
train_dataset,
train_batch_size=2,
eval_dataset=None,
optimizer=None,
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
learning_rate=0.0001,
lr_decay_power=0.9,
early_stop=False,
early_stop_patience=5,
use_vdl=True,
resume_checkpoint=None,
quant_config=None):
"""
Quantization-aware training.
Args:
num_epochs (int): Number of epochs.
train_dataset (paddlers.datasets.SegDataset): Training dataset.
train_batch_size (int, optional): Total batch size among all cards used in
training. Defaults to 2.
eval_dataset (paddlers.datasets.SegDataset|None, optional): Evaluation dataset.
If None, the model will not be evaluated during training process.
Defaults to None.
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
training. If None, a default optimizer will be used. Defaults to None.
save_interval_epochs (int, optional): Epoch interval for saving the model.
Defaults to 1.
log_interval_steps (int, optional): Step interval for printing training
information. Defaults to 2.
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
learning_rate (float, optional): Learning rate for training.
Defaults to .0001.
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
early_stop (bool, optional): Whether to adopt early stop strategy.
Defaults to False.
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
process. Defaults to True.
quant_config (dict|None, optional): Quantization configuration. If None,
a default rule of thumb configuration will be used. Defaults to None.
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
quantization-aware training from. If None, no training checkpoint will
be resumed. Defaults to None.
"""
self._prepare_qat(quant_config)
self.train(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
optimizer=optimizer,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
pretrain_weights=None,
learning_rate=learning_rate,
lr_decay_power=lr_decay_power,
early_stop=early_stop,
early_stop_patience=early_stop_patience,
use_vdl=use_vdl,
resume_checkpoint=resume_checkpoint)
def evaluate(self, eval_dataset, batch_size=1, return_details=False):
"""
Evaluate the model.
Args:
eval_dataset (paddlers.datasets.SegDataset): Evaluation dataset.
batch_size (int, optional): Total batch size among all cards used for
evaluation. Defaults to 1.
return_details (bool, optional): Whether to return evaluation details.
Defaults to False.
Returns:
collections.OrderedDict with key-value pairs:
{"miou": `mean intersection over union`,
"category_iou": `category-wise mean intersection over union`,
"oacc": `overall accuracy`,
"category_acc": `category-wise accuracy`,
"kappa": ` kappa coefficient`,
"category_F1-score": `F1 score`}.
"""
2 years ago
self._check_transforms(eval_dataset.transforms, 'eval')
self.net.eval()
nranks = paddle.distributed.get_world_size()
local_rank = paddle.distributed.get_rank()
if nranks > 1:
# Initialize parallel environment if not done.
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
):
paddle.distributed.init_parallel_env()
batch_size_each_card = get_single_card_bs(batch_size)
if batch_size_each_card > 1:
batch_size_each_card = 1
batch_size = batch_size_each_card * paddlers.env_info['num']
logging.warning(
"Segmenter only supports batch_size=1 for each gpu/cpu card " \
"during evaluation, so batch_size " \
"is forcibly set to {}.".format(batch_size))
self.eval_data_loader = self.build_data_loader(
eval_dataset, batch_size=batch_size, mode='eval')
intersect_area_all = 0
pred_area_all = 0
label_area_all = 0
conf_mat_all = []
logging.info(
"Start to evaluate(total_samples={}, total_steps={})...".format(
eval_dataset.num_samples,
math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
with paddle.no_grad():
for step, data in enumerate(self.eval_data_loader):
data.append(eval_dataset.transforms.transforms)
outputs = self.run(self.net, data, 'eval')
pred_area = outputs['pred_area']
label_area = outputs['label_area']
intersect_area = outputs['intersect_area']
conf_mat = outputs['conf_mat']
# Gather from all ranks
if nranks > 1:
intersect_area_list = []
pred_area_list = []
label_area_list = []
conf_mat_list = []
paddle.distributed.all_gather(intersect_area_list,
intersect_area)
paddle.distributed.all_gather(pred_area_list, pred_area)
paddle.distributed.all_gather(label_area_list, label_area)
paddle.distributed.all_gather(conf_mat_list, conf_mat)
# Some image has been evaluated and should be eliminated in last iter
if (step + 1) * nranks > len(eval_dataset):
valid = len(eval_dataset) - step * nranks
intersect_area_list = intersect_area_list[:valid]
pred_area_list = pred_area_list[:valid]
label_area_list = label_area_list[:valid]
conf_mat_list = conf_mat_list[:valid]
intersect_area_all += sum(intersect_area_list)
pred_area_all += sum(pred_area_list)
label_area_all += sum(label_area_list)
conf_mat_all.extend(conf_mat_list)
else:
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
conf_mat_all.append(conf_mat)
class_iou, miou = ppseg.utils.metrics.mean_iou(
intersect_area_all, pred_area_all, label_area_all)
class_acc, oacc = ppseg.utils.metrics.accuracy(intersect_area_all,
pred_area_all)
kappa = ppseg.utils.metrics.kappa(intersect_area_all, pred_area_all,
label_area_all)
category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
label_area_all)
eval_metrics = OrderedDict(
zip([
'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
'category_F1-score'
], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
if return_details:
conf_mat = sum(conf_mat_all)
eval_details = {'confusion_matrix': conf_mat.tolist()}
return eval_metrics, eval_details
return eval_metrics
def predict(self, img_file, transforms=None):
"""
Do inference.
Args:
img_file (list[np.ndarray|str] | str | np.ndarray): Image path or decoded
image data, which also could constitute a list, meaning all images to be
2 years ago
predicted as a mini-batch.
transforms (paddlers.transforms.Compose|None, optional): Transforms for
inputs. If None, the transforms for evaluation process will be used.
Defaults to None.
Returns:
If `img_file` is a tuple of string or np.array, the result is a dict with
the following key-value pairs:
label_map (np.ndarray): Predicted label map (HW).
score_map (np.ndarray): Prediction score map (HWC).
If `img_file` is a list, the result is a list composed of dicts with the
above keys.
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise ValueError("transforms need to be defined, now is None.")
if transforms is None:
transforms = self.test_transforms
if isinstance(img_file, (str, np.ndarray)):
images = [img_file]
else:
images = img_file
batch_im, batch_origin_shape = self._preprocess(images, transforms,
self.model_type)
self.net.eval()
data = (batch_im, batch_origin_shape, transforms.transforms)
outputs = self.run(self.net, data, 'test')
label_map_list = outputs['label_map']
score_map_list = outputs['score_map']
if isinstance(img_file, list):
prediction = [{
'label_map': l,
'score_map': s
} for l, s in zip(label_map_list, score_map_list)]
else:
prediction = {
'label_map': label_map_list[0],
'score_map': score_map_list[0]
}
return prediction
def slider_predict(self,
img_file,
save_dir,
block_size,
overlap=36,
transforms=None):
"""
Do inference.
Args:
img_file (str): Image path.
save_dir (str): Directory that contains saved geotiff file.
block_size (list[int] | tuple[int] | int):
2 years ago
Size of block.
overlap (list[int] | tuple[int] | int, optional):
2 years ago
Overlap between two blocks. Defaults to 36.
transforms (paddlers.transforms.Compose|None, optional): Transforms for
inputs. If None, the transforms for evaluation process will be used.
Defaults to None.
"""
try:
from osgeo import gdal
except:
import gdal
if isinstance(block_size, int):
block_size = (block_size, block_size)
elif isinstance(block_size, (tuple, list)) and len(block_size) == 2:
block_size = tuple(block_size)
else:
raise ValueError(
"`block_size` must be a tuple/list of length 2 or an integer.")
if isinstance(overlap, int):
overlap = (overlap, overlap)
elif isinstance(overlap, (tuple, list)) and len(overlap) == 2:
overlap = tuple(overlap)
else:
raise ValueError(
"`overlap` must be a tuple/list of length 2 or an integer.")
src_data = gdal.Open(img_file)
width = src_data.RasterXSize
height = src_data.RasterYSize
bands = src_data.RasterCount
driver = gdal.GetDriverByName("GTiff")
file_name = osp.splitext(osp.normpath(img_file).split(os.sep)[-1])[
0] + ".tif"
if not osp.exists(save_dir):
os.makedirs(save_dir)
save_file = osp.join(save_dir, file_name)
dst_data = driver.Create(save_file, width, height, 1, gdal.GDT_Byte)
dst_data.SetGeoTransform(src_data.GetGeoTransform())
dst_data.SetProjection(src_data.GetProjection())
band = dst_data.GetRasterBand(1)
band.WriteArray(255 * np.ones((height, width), dtype="uint8"))
step = np.array(block_size) - np.array(overlap)
for yoff in range(0, height, step[1]):
for xoff in range(0, width, step[0]):
xsize, ysize = block_size
if xoff + xsize > width:
xsize = int(width - xoff)
if yoff + ysize > height:
ysize = int(height - yoff)
im = src_data.ReadAsArray(int(xoff), int(yoff), xsize,
ysize).transpose((1, 2, 0))
# Fill
h, w = im.shape[:2]
im_fill = np.zeros(
(block_size[1], block_size[0], bands), dtype=im.dtype)
im_fill[:h, :w, :] = im
# Predict
pred = self.predict(im_fill,
transforms)["label_map"].astype("uint8")
# Overlap
rd_block = band.ReadAsArray(int(xoff), int(yoff), xsize, ysize)
mask = (rd_block == pred[:h, :w]) | (rd_block == 255)
temp = pred[:h, :w].copy()
temp[mask == False] = 0
band.WriteArray(temp, int(xoff), int(yoff))
dst_data.FlushCache()
dst_data = None
print("GeoTiff saved in {}.".format(save_file))
def _preprocess(self, images, transforms, to_tensor=True):
2 years ago
self._check_transforms(transforms, 'test')
batch_im = list()
batch_ori_shape = list()
for im in images:
2 years ago
if isinstance(im, str):
im = decode_image(im, to_rgb=False)
ori_shape = im.shape[:2]
sample = {'image': im}
im = transforms(sample)[0]
batch_im.append(im)
batch_ori_shape.append(ori_shape)
if to_tensor:
batch_im = paddle.to_tensor(batch_im)
else:
batch_im = np.asarray(batch_im)
return batch_im, batch_ori_shape
@staticmethod
def get_transforms_shape_info(batch_ori_shape, transforms):
batch_restore_list = list()
for ori_shape in batch_ori_shape:
restore_list = list()
h, w = ori_shape[0], ori_shape[1]
for op in transforms:
if op.__class__.__name__ == 'Resize':
restore_list.append(('resize', (h, w)))
h, w = op.target_size
elif op.__class__.__name__ == 'ResizeByShort':
restore_list.append(('resize', (h, w)))
im_short_size = min(h, w)
im_long_size = max(h, w)
scale = float(op.short_size) / float(im_short_size)
if 0 < op.max_size < np.round(scale * im_long_size):
scale = float(op.max_size) / float(im_long_size)
h = int(round(h * scale))
w = int(round(w * scale))
elif op.__class__.__name__ == 'ResizeByLong':
restore_list.append(('resize', (h, w)))
im_long_size = max(h, w)
scale = float(op.long_size) / float(im_long_size)
h = int(round(h * scale))
w = int(round(w * scale))
elif op.__class__.__name__ == 'Pad':
if op.target_size:
target_h, target_w = op.target_size
else:
target_h = int(
(np.ceil(h / op.size_divisor) * op.size_divisor))
target_w = int(
(np.ceil(w / op.size_divisor) * op.size_divisor))
if op.pad_mode == -1:
offsets = op.offsets
elif op.pad_mode == 0:
offsets = [0, 0]
elif op.pad_mode == 1:
offsets = [(target_h - h) // 2, (target_w - w) // 2]
else:
offsets = [target_h - h, target_w - w]
restore_list.append(('padding', (h, w), offsets))
h, w = target_h, target_w
batch_restore_list.append(restore_list)
return batch_restore_list
def _postprocess(self, batch_pred, batch_origin_shape, transforms):
batch_restore_list = BaseSegmenter.get_transforms_shape_info(
batch_origin_shape, transforms)
if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer':
return self._infer_postprocess(
batch_label_map=batch_pred[0],
batch_score_map=batch_pred[1],
batch_restore_list=batch_restore_list)
results = []
if batch_pred.dtype == paddle.float32:
mode = 'bilinear'
else:
mode = 'nearest'
for pred, restore_list in zip(batch_pred, batch_restore_list):
pred = paddle.unsqueeze(pred, axis=0)
for item in restore_list[::-1]:
h, w = item[1][0], item[1][1]
if item[0] == 'resize':
pred = F.interpolate(
pred, (h, w), mode=mode, data_format='NCHW')
elif item[0] == 'padding':
x, y = item[2]
pred = pred[:, :, y:y + h, x:x + w]
else:
pass
results.append(pred)
return results
def _infer_postprocess(self, batch_label_map, batch_score_map,
batch_restore_list):
label_maps = []
score_maps = []
for label_map, score_map, restore_list in zip(
batch_label_map, batch_score_map, batch_restore_list):
if not isinstance(label_map, np.ndarray):
label_map = paddle.unsqueeze(label_map, axis=[0, 3])
score_map = paddle.unsqueeze(score_map, axis=0)
for item in restore_list[::-1]:
h, w = item[1][0], item[1][1]
if item[0] == 'resize':
if isinstance(label_map, np.ndarray):
label_map = cv2.resize(
label_map, (w, h), interpolation=cv2.INTER_NEAREST)
score_map = cv2.resize(
score_map, (w, h), interpolation=cv2.INTER_LINEAR)
else:
label_map = F.interpolate(
label_map, (h, w),
mode='nearest',
data_format='NHWC')
score_map = F.interpolate(
score_map, (h, w),
mode='bilinear',
data_format='NHWC')
elif item[0] == 'padding':
x, y = item[2]
if isinstance(label_map, np.ndarray):
label_map = label_map[..., y:y + h, x:x + w]
score_map = score_map[..., y:y + h, x:x + w]
else:
label_map = label_map[:, :, y:y + h, x:x + w]
score_map = score_map[:, :, y:y + h, x:x + w]
else:
pass
label_map = label_map.squeeze()
score_map = score_map.squeeze()
if not isinstance(label_map, np.ndarray):
label_map = label_map.numpy()
score_map = score_map.numpy()
label_maps.append(label_map.squeeze())
score_maps.append(score_map.squeeze())
return label_maps, score_maps
2 years ago
def _check_transforms(self, transforms, mode):
super()._check_transforms(transforms, mode)
if not isinstance(transforms.arrange,
paddlers.transforms.ArrangeSegmenter):
raise TypeError(
"`transforms.arrange` must be an ArrangeSegmenter object.")
def set_losses(self, losses, weights=None):
if weights is None:
weights = [1. for _ in range(len(losses))]
self.losses = {'types': losses, 'coef': weights}
class UNet(BaseSegmenter):
def __init__(self,
input_channel=3,
num_classes=2,
use_mixed_loss=False,
losses=None,
use_deconv=False,
align_corners=False,
**params):
params.update({
'use_deconv': use_deconv,
'align_corners': align_corners
})
super(UNet, self).__init__(
model_name='UNet',
input_channel=input_channel,
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class DeepLabV3P(BaseSegmenter):
def __init__(self,
input_channel=3,
num_classes=2,
backbone='ResNet50_vd',
use_mixed_loss=False,
losses=None,
output_stride=8,
backbone_indices=(0, 3),
aspp_ratios=(1, 12, 24, 36),
aspp_out_channels=256,
align_corners=False,
**params):
self.backbone_name = backbone
if backbone not in ['ResNet50_vd', 'ResNet101_vd']:
raise ValueError(
"backbone: {} is not supported. Please choose one of "
"{'ResNet50_vd', 'ResNet101_vd'}.".format(backbone))
if params.get('with_net', True):
with DisablePrint():
backbone = getattr(ppseg.models, backbone)(
input_channel=input_channel, output_stride=output_stride)
else:
backbone = None
params.update({
'backbone': backbone,
'backbone_indices': backbone_indices,
'aspp_ratios': aspp_ratios,
'aspp_out_channels': aspp_out_channels,
'align_corners': align_corners
})
super(DeepLabV3P, self).__init__(
model_name='DeepLabV3P',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class FastSCNN(BaseSegmenter):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
align_corners=False,
**params):
params.update({'align_corners': align_corners})
super(FastSCNN, self).__init__(
model_name='FastSCNN',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class HRNet(BaseSegmenter):
def __init__(self,
num_classes=2,
width=48,
use_mixed_loss=False,
losses=None,
align_corners=False,
**params):
if width not in (18, 48):
raise ValueError(
"width={} is not supported, please choose from {18, 48}.".
format(width))
self.backbone_name = 'HRNet_W{}'.format(width)
if params.get('with_net', True):
with DisablePrint():
backbone = getattr(ppseg.models, self.backbone_name)(
align_corners=align_corners)
else:
backbone = None
params.update({'backbone': backbone, 'align_corners': align_corners})
super(HRNet, self).__init__(
model_name='FCN',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
self.model_name = 'HRNet'
class BiSeNetV2(BaseSegmenter):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
align_corners=False,
**params):
params.update({'align_corners': align_corners})
super(BiSeNetV2, self).__init__(
model_name='BiSeNetV2',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class FarSeg(BaseSegmenter):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(FarSeg, self).__init__(
model_name='FarSeg',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)