|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os.path as osp
|
|
|
|
import tempfile
|
|
|
|
|
|
|
|
import paddlers as pdrs
|
|
|
|
import paddlers.transforms as T
|
|
|
|
from testing_utils import CommonTest
|
|
|
|
|
|
|
|
|
|
|
|
class _TestSliderPredictNamespace:
|
|
|
|
class TestSliderPredict(CommonTest):
|
|
|
|
def test_blocksize_and_overlap_whole(self):
|
|
|
|
# Original image size (256, 256)
|
|
|
|
with tempfile.TemporaryDirectory() as td:
|
|
|
|
# Whole-image inference using predict()
|
|
|
|
pred_whole = self.model.predict(self.image_path,
|
|
|
|
self.transforms)
|
|
|
|
pred_whole = pred_whole['label_map']
|
|
|
|
|
|
|
|
# Whole-image inference using slider_predict()
|
|
|
|
save_dir = osp.join(td, 'pred1')
|
|
|
|
self.model.slider_predict(self.image_path, save_dir, 256, 0,
|
|
|
|
self.transforms)
|
|
|
|
pred1 = T.decode_image(
|
|
|
|
osp.join(save_dir, self.basename),
|
|
|
|
read_raw=True,
|
|
|
|
decode_sar=False)
|
|
|
|
self.check_output_equal(pred1.shape, pred_whole.shape)
|
|
|
|
|
|
|
|
# `block_size` == `overlap`
|
|
|
|
save_dir = osp.join(td, 'pred2')
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
self.model.slider_predict(self.image_path, save_dir, 128,
|
|
|
|
128, self.transforms)
|
|
|
|
|
|
|
|
# `block_size` is a tuple
|
|
|
|
save_dir = osp.join(td, 'pred3')
|
|
|
|
self.model.slider_predict(self.image_path, save_dir, (128, 32),
|
|
|
|
0, self.transforms)
|
|
|
|
pred3 = T.decode_image(
|
|
|
|
osp.join(save_dir, self.basename),
|
|
|
|
read_raw=True,
|
|
|
|
decode_sar=False)
|
|
|
|
self.check_output_equal(pred3.shape, pred_whole.shape)
|
|
|
|
|
|
|
|
# `block_size` and `overlap` are both tuples
|
|
|
|
save_dir = osp.join(td, 'pred4')
|
|
|
|
self.model.slider_predict(self.image_path, save_dir, (128, 100),
|
|
|
|
(10, 5), self.transforms)
|
|
|
|
pred4 = T.decode_image(
|
|
|
|
osp.join(save_dir, self.basename),
|
|
|
|
read_raw=True,
|
|
|
|
decode_sar=False)
|
|
|
|
self.check_output_equal(pred4.shape, pred_whole.shape)
|
|
|
|
|
|
|
|
# `block_size` larger than image size
|
|
|
|
save_dir = osp.join(td, 'pred5')
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
self.model.slider_predict(self.image_path, save_dir, 512, 0,
|
|
|
|
self.transforms)
|
|
|
|
|
|
|
|
def test_merge_strategy(self):
|
|
|
|
with tempfile.TemporaryDirectory() as td:
|
|
|
|
# Whole-image inference using predict()
|
|
|
|
pred_whole = self.model.predict(self.image_path,
|
|
|
|
self.transforms)
|
|
|
|
pred_whole = pred_whole['label_map']
|
|
|
|
|
|
|
|
# 'keep_first'
|
|
|
|
save_dir = osp.join(td, 'keep_first')
|
|
|
|
self.model.slider_predict(
|
|
|
|
self.image_path,
|
|
|
|
save_dir,
|
|
|
|
128,
|
|
|
|
64,
|
|
|
|
self.transforms,
|
|
|
|
merge_strategy='keep_first')
|
|
|
|
pred_keepfirst = T.decode_image(
|
|
|
|
osp.join(save_dir, self.basename),
|
|
|
|
read_raw=True,
|
|
|
|
decode_sar=False)
|
|
|
|
self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
|
|
|
|
|
|
|
|
# 'keep_last'
|
|
|
|
save_dir = osp.join(td, 'keep_last')
|
|
|
|
self.model.slider_predict(
|
|
|
|
self.image_path,
|
|
|
|
save_dir,
|
|
|
|
128,
|
|
|
|
64,
|
|
|
|
self.transforms,
|
|
|
|
merge_strategy='keep_last')
|
|
|
|
pred_keeplast = T.decode_image(
|
|
|
|
osp.join(save_dir, self.basename),
|
|
|
|
read_raw=True,
|
|
|
|
decode_sar=False)
|
|
|
|
self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
|
|
|
|
|
|
|
|
# 'accum'
|
|
|
|
save_dir = osp.join(td, 'accum')
|
|
|
|
self.model.slider_predict(
|
|
|
|
self.image_path,
|
|
|
|
save_dir,
|
|
|
|
128,
|
|
|
|
64,
|
|
|
|
self.transforms,
|
|
|
|
merge_strategy='accum')
|
|
|
|
pred_accum = T.decode_image(
|
|
|
|
osp.join(save_dir, self.basename),
|
|
|
|
read_raw=True,
|
|
|
|
decode_sar=False)
|
|
|
|
self.check_output_equal(pred_accum.shape, pred_whole.shape)
|
|
|
|
|
|
|
|
def test_geo_info(self):
|
|
|
|
with tempfile.TemporaryDirectory() as td:
|
|
|
|
_, geo_info_in = T.decode_image(
|
|
|
|
self.ref_path, read_geo_info=True)
|
|
|
|
self.model.slider_predict(self.image_path, td, 128, 0,
|
|
|
|
self.transforms)
|
|
|
|
_, geo_info_out = T.decode_image(
|
|
|
|
osp.join(td, self.basename), read_geo_info=True)
|
|
|
|
self.assertEqual(geo_info_out['geo_trans'],
|
|
|
|
geo_info_in['geo_trans'])
|
|
|
|
self.assertEqual(geo_info_out['geo_proj'],
|
|
|
|
geo_info_in['geo_proj'])
|
|
|
|
|
|
|
|
def test_batch_size(self):
|
|
|
|
with tempfile.TemporaryDirectory() as td:
|
|
|
|
# batch_size = 1
|
|
|
|
save_dir = osp.join(td, 'bs1')
|
|
|
|
self.model.slider_predict(
|
|
|
|
self.image_path,
|
|
|
|
save_dir,
|
|
|
|
128,
|
|
|
|
64,
|
|
|
|
self.transforms,
|
|
|
|
merge_strategy='keep_first',
|
|
|
|
batch_size=1)
|
|
|
|
pred_bs1 = T.decode_image(
|
|
|
|
osp.join(save_dir, self.basename),
|
|
|
|
read_raw=True,
|
|
|
|
decode_sar=False)
|
|
|
|
|
|
|
|
# batch_size = 4
|
|
|
|
save_dir = osp.join(td, 'bs4')
|
|
|
|
self.model.slider_predict(
|
|
|
|
self.image_path,
|
|
|
|
save_dir,
|
|
|
|
128,
|
|
|
|
64,
|
|
|
|
self.transforms,
|
|
|
|
merge_strategy='keep_first',
|
|
|
|
batch_size=4)
|
|
|
|
pred_bs4 = T.decode_image(
|
|
|
|
osp.join(save_dir, self.basename),
|
|
|
|
read_raw=True,
|
|
|
|
decode_sar=False)
|
|
|
|
self.check_output_equal(pred_bs4, pred_bs1)
|
|
|
|
|
|
|
|
# batch_size = 8
|
|
|
|
save_dir = osp.join(td, 'bs4')
|
|
|
|
self.model.slider_predict(
|
|
|
|
self.image_path,
|
|
|
|
save_dir,
|
|
|
|
128,
|
|
|
|
64,
|
|
|
|
self.transforms,
|
|
|
|
merge_strategy='keep_first',
|
|
|
|
batch_size=8)
|
|
|
|
pred_bs8 = T.decode_image(
|
|
|
|
osp.join(save_dir, self.basename),
|
|
|
|
read_raw=True,
|
|
|
|
decode_sar=False)
|
|
|
|
self.check_output_equal(pred_bs8, pred_bs1)
|
|
|
|
|
|
|
|
|
|
|
|
class TestSegSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
|
|
|
|
def setUp(self):
|
|
|
|
self.model = pdrs.tasks.seg.UNet(in_channels=10)
|
|
|
|
self.transforms = T.Compose([
|
|
|
|
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
|
|
|
|
T.ArrangeSegmenter('test')
|
|
|
|
])
|
|
|
|
self.image_path = "data/ssst/multispectral.tif"
|
|
|
|
self.ref_path = self.image_path
|
|
|
|
self.basename = osp.basename(self.ref_path)
|
|
|
|
|
|
|
|
|
|
|
|
class TestCDSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
|
|
|
|
def setUp(self):
|
|
|
|
self.model = pdrs.tasks.cd.BIT(in_channels=10)
|
|
|
|
self.transforms = T.Compose([
|
|
|
|
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
|
|
|
|
T.ArrangeChangeDetector('test')
|
|
|
|
])
|
|
|
|
self.image_path = ("data/ssmt/multispectral_t1.tif",
|
|
|
|
"data/ssmt/multispectral_t2.tif")
|
|
|
|
self.ref_path = self.image_path[0]
|
|
|
|
self.basename = osp.basename(self.ref_path)
|