You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

90 lines
3.0 KiB

#!/usr/bin/env python
# 图像分割模型UNet训练示例脚本
# 执行此脚本前,请确认已正确安装PaddleRS库
import paddlers as pdrs
from paddlers import transforms as T
# 下载文件存放目录
DOWNLOAD_DIR = './data/rsseg/'
# 数据集存放目录
DATA_DIR = './data/rsseg/remote_sensing_seg/'
# 训练集`file_list`文件路径
TRAIN_FILE_LIST_PATH = './data/rsseg/remote_sensing_seg/train.txt'
# 验证集`file_list`文件路径
EVAL_FILE_LIST_PATH = './data/rsseg/remote_sensing_seg/val.txt'
# 数据集类别信息文件路径
LABEL_LIST_PATH = './data/rsseg/remote_sensing_seg/labels.txt'
# 实验目录,保存输出的模型权重和结果
EXP_DIR = './output/unet/'
# 影像波段数量
NUM_BANDS = 10
# 下载和解压多光谱地块分类数据集
seg_dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip'
pdrs.utils.download_and_decompress(seg_dataset, path=DOWNLOAD_DIR)
# 定义训练和验证时使用的数据变换(数据增强、预处理等)
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行
# API说明:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/transforms.md
train_transforms = T.Compose([
# 将影像缩放到512x512大小
T.Resize(target_size=512),
# 以50%的概率实施随机水平翻转
T.RandomHorizontalFlip(prob=0.5),
# 将数据归一化到[-1,1]
T.Normalize(
mean=[0.5] * NUM_BANDS, std=[0.5] * NUM_BANDS),
])
eval_transforms = T.Compose([
T.Resize(target_size=512),
# 验证阶段与训练阶段的数据归一化方式必须相同
T.Normalize(
mean=[0.5] * NUM_BANDS, std=[0.5] * NUM_BANDS),
])
# 分别构建训练和验证所用的数据集
train_dataset = pdrs.datasets.SegDataset(
data_dir=DATA_DIR,
file_list=TRAIN_FILE_LIST_PATH,
label_list=LABEL_LIST_PATH,
transforms=train_transforms,
num_workers=0,
shuffle=True)
eval_dataset = pdrs.datasets.SegDataset(
data_dir=DATA_DIR,
file_list=EVAL_FILE_LIST_PATH,
label_list=LABEL_LIST_PATH,
transforms=eval_transforms,
num_workers=0,
shuffle=False)
# 构建UNet模型
# 目前已支持的模型请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/model_zoo.md
# 模型输入参数请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/paddlers/tasks/segmenter.py
model = pdrs.tasks.UNet(
input_channel=NUM_BANDS, num_classes=len(train_dataset.labels))
# 执行模型训练
model.train(
num_epochs=10,
train_dataset=train_dataset,
train_batch_size=4,
eval_dataset=eval_dataset,
save_interval_epochs=5,
# 每多少次迭代记录一次日志
log_interval_steps=4,
save_dir=EXP_DIR,
# 初始学习率大小
learning_rate=0.001,
# 是否使用early stopping策略,当精度不再改善时提前终止训练
early_stop=False,
# 是否启用VisualDL日志功能
use_vdl=True,
# 指定从某个检查点继续训练
resume_checkpoint=None)