|
|
|
#!/usr/bin/env python
|
|
|
|
|
|
|
|
# 变化检测模型STANet训练示例脚本
|
|
|
|
# 执行此脚本前,请确认已正确安装PaddleRS库
|
|
|
|
|
|
|
|
import paddlers as pdrs
|
|
|
|
from paddlers import transforms as T
|
|
|
|
|
|
|
|
# 数据集存放目录
|
|
|
|
DATA_DIR = './data/airchange/'
|
|
|
|
# 训练集`file_list`文件路径
|
|
|
|
TRAIN_FILE_LIST_PATH = './data/airchange/train.txt'
|
|
|
|
# 验证集`file_list`文件路径
|
|
|
|
EVAL_FILE_LIST_PATH = './data/airchange/eval.txt'
|
|
|
|
# 实验目录,保存输出的模型权重和结果
|
|
|
|
EXP_DIR = './output/stanet/'
|
|
|
|
|
|
|
|
# 下载和解压AirChange数据集
|
|
|
|
airchange_dataset = 'http://mplab.sztaki.hu/~bcsaba/test/SZTAKI_AirChange_Benchmark.zip'
|
|
|
|
pdrs.utils.download_and_decompress(airchange_dataset, path=DATA_DIR)
|
|
|
|
|
|
|
|
# 定义训练和验证时使用的数据变换(数据增强、预处理等)
|
|
|
|
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行
|
|
|
|
# API说明:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/transforms.md
|
|
|
|
train_transforms = T.Compose([
|
|
|
|
# 随机裁剪
|
|
|
|
T.RandomCrop(
|
|
|
|
# 裁剪区域将被缩放到256x256
|
|
|
|
crop_size=256,
|
|
|
|
# 裁剪区域的横纵比在0.5-2之间变动
|
|
|
|
aspect_ratio=[0.5, 2.0],
|
|
|
|
# 裁剪区域相对原始影像长宽比例在一定范围内变动,最小不低于原始长宽的1/5
|
|
|
|
scaling=[0.2, 1.0]),
|
|
|
|
# 以50%的概率实施随机水平翻转
|
|
|
|
T.RandomHorizontalFlip(prob=0.5),
|
|
|
|
# 将数据归一化到[-1,1]
|
|
|
|
T.Normalize(
|
|
|
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
|
|
|
])
|
|
|
|
|
|
|
|
eval_transforms = T.Compose([
|
|
|
|
# 验证阶段与训练阶段的数据归一化方式必须相同
|
|
|
|
T.Normalize(
|
|
|
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
|
|
|
])
|
|
|
|
|
|
|
|
# 分别构建训练和验证所用的数据集
|
|
|
|
train_dataset = pdrs.datasets.CDDataset(
|
|
|
|
data_dir=DATA_DIR,
|
|
|
|
file_list=TRAIN_FILE_LIST_PATH,
|
|
|
|
label_list=None,
|
|
|
|
transforms=train_transforms,
|
|
|
|
num_workers=0,
|
|
|
|
shuffle=True,
|
|
|
|
with_seg_labels=False,
|
|
|
|
binarize_labels=True)
|
|
|
|
|
|
|
|
eval_dataset = pdrs.datasets.CDDataset(
|
|
|
|
data_dir=DATA_DIR,
|
|
|
|
file_list=EVAL_FILE_LIST_PATH,
|
|
|
|
label_list=None,
|
|
|
|
transforms=eval_transforms,
|
|
|
|
num_workers=0,
|
|
|
|
shuffle=False,
|
|
|
|
with_seg_labels=False,
|
|
|
|
binarize_labels=True)
|
|
|
|
|
|
|
|
# 使用默认参数构建STANet模型
|
|
|
|
# 目前已支持的模型请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/model_zoo.md
|
|
|
|
# 模型输入参数请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/paddlers/tasks/change_detector.py
|
|
|
|
model = pdrs.tasks.STANet()
|
|
|
|
|
|
|
|
# 执行模型训练
|
|
|
|
model.train(
|
|
|
|
num_epochs=5,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=4,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
save_interval_epochs=3,
|
|
|
|
# 每多少次迭代记录一次日志
|
|
|
|
log_interval_steps=50,
|
|
|
|
save_dir=EXP_DIR,
|
|
|
|
# 是否使用early stopping策略,当精度不再改善时提前终止训练
|
|
|
|
early_stop=False,
|
|
|
|
# 是否启用VisualDL日志功能
|
|
|
|
use_vdl=True,
|
|
|
|
# 指定从某个检查点继续训练
|
|
|
|
resume_checkpoint=None)
|