|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import numpy as np
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
from paddlers.models.ppseg.cvlibs import manager
|
|
|
|
from paddlers.models.ppseg.transforms import Compose
|
|
|
|
import paddlers.models.ppseg.transforms.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
@manager.DATASETS.add_component
|
|
|
|
class Dataset(paddle.io.Dataset):
|
|
|
|
"""
|
|
|
|
Pass in a custom dataset that conforms to the format.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
transforms (list): Transforms for image.
|
|
|
|
dataset_root (str): The dataset directory.
|
|
|
|
num_classes (int): Number of classes.
|
|
|
|
mode (str, optional): which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'.
|
|
|
|
train_path (str, optional): The train dataset file. When mode is 'train', train_path is necessary.
|
|
|
|
The contents of train_path file are as follow:
|
|
|
|
image1.jpg ground_truth1.png
|
|
|
|
image2.jpg ground_truth2.png
|
|
|
|
val_path (str. optional): The evaluation dataset file. When mode is 'val', val_path is necessary.
|
|
|
|
The contents is the same as train_path
|
|
|
|
test_path (str, optional): The test dataset file. When mode is 'test', test_path is necessary.
|
|
|
|
The annotation file is not necessary in test_path file.
|
|
|
|
separator (str, optional): The separator of dataset list. Default: ' '.
|
|
|
|
edge (bool, optional): Whether to compute edge while training. Default: False
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
import paddlers.models.ppseg.transforms as T
|
|
|
|
from paddlers.models.ppseg.datasets import Dataset
|
|
|
|
|
|
|
|
transforms = [T.RandomPaddingCrop(crop_size=(512,512)), T.Normalize()]
|
|
|
|
dataset_root = 'dataset_root_path'
|
|
|
|
train_path = 'train_path'
|
|
|
|
num_classes = 2
|
|
|
|
dataset = Dataset(transforms = transforms,
|
|
|
|
dataset_root = dataset_root,
|
|
|
|
num_classes = 2,
|
|
|
|
train_path = train_path,
|
|
|
|
mode = 'train')
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
transforms,
|
|
|
|
dataset_root,
|
|
|
|
num_classes,
|
|
|
|
mode='train',
|
|
|
|
train_path=None,
|
|
|
|
val_path=None,
|
|
|
|
test_path=None,
|
|
|
|
separator=' ',
|
|
|
|
ignore_index=255,
|
|
|
|
edge=False):
|
|
|
|
self.dataset_root = dataset_root
|
|
|
|
self.transforms = Compose(transforms)
|
|
|
|
self.file_list = list()
|
|
|
|
self.mode = mode.lower()
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.ignore_index = ignore_index
|
|
|
|
self.edge = edge
|
|
|
|
|
|
|
|
if self.mode not in ['train', 'val', 'test']:
|
|
|
|
raise ValueError(
|
|
|
|
"mode should be 'train', 'val' or 'test', but got {}.".format(
|
|
|
|
self.mode))
|
|
|
|
|
|
|
|
if self.transforms is None:
|
|
|
|
raise ValueError("`transforms` is necessary, but it is None.")
|
|
|
|
|
|
|
|
if not os.path.exists(self.dataset_root):
|
|
|
|
raise FileNotFoundError('there is not `dataset_root`: {}.'.format(
|
|
|
|
self.dataset_root))
|
|
|
|
|
|
|
|
if self.mode == 'train':
|
|
|
|
if train_path is None:
|
|
|
|
raise ValueError(
|
|
|
|
'When `mode` is "train", `train_path` is necessary, but it is None.'
|
|
|
|
)
|
|
|
|
elif not os.path.exists(train_path):
|
|
|
|
raise FileNotFoundError('`train_path` is not found: {}'.format(
|
|
|
|
train_path))
|
|
|
|
else:
|
|
|
|
file_path = train_path
|
|
|
|
elif self.mode == 'val':
|
|
|
|
if val_path is None:
|
|
|
|
raise ValueError(
|
|
|
|
'When `mode` is "val", `val_path` is necessary, but it is None.'
|
|
|
|
)
|
|
|
|
elif not os.path.exists(val_path):
|
|
|
|
raise FileNotFoundError('`val_path` is not found: {}'.format(
|
|
|
|
val_path))
|
|
|
|
else:
|
|
|
|
file_path = val_path
|
|
|
|
else:
|
|
|
|
if test_path is None:
|
|
|
|
raise ValueError(
|
|
|
|
'When `mode` is "test", `test_path` is necessary, but it is None.'
|
|
|
|
)
|
|
|
|
elif not os.path.exists(test_path):
|
|
|
|
raise FileNotFoundError('`test_path` is not found: {}'.format(
|
|
|
|
test_path))
|
|
|
|
else:
|
|
|
|
file_path = test_path
|
|
|
|
|
|
|
|
with open(file_path, 'r') as f:
|
|
|
|
for line in f:
|
|
|
|
items = line.strip().split(separator)
|
|
|
|
if len(items) != 2:
|
|
|
|
if self.mode == 'train' or self.mode == 'val':
|
|
|
|
raise ValueError(
|
|
|
|
"File list format incorrect! In training or evaluation task it should be"
|
|
|
|
" image_name{}label_name\\n".format(separator))
|
|
|
|
image_path = os.path.join(self.dataset_root, items[0])
|
|
|
|
label_path = None
|
|
|
|
else:
|
|
|
|
image_path = os.path.join(self.dataset_root, items[0])
|
|
|
|
label_path = os.path.join(self.dataset_root, items[1])
|
|
|
|
self.file_list.append([image_path, label_path])
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
image_path, label_path = self.file_list[idx]
|
|
|
|
if self.mode == 'test':
|
|
|
|
im, _ = self.transforms(im=image_path)
|
|
|
|
im = im[np.newaxis, ...]
|
|
|
|
return im, image_path
|
|
|
|
elif self.mode == 'val':
|
|
|
|
im, _ = self.transforms(im=image_path)
|
|
|
|
label = np.asarray(Image.open(label_path))
|
|
|
|
label = label[np.newaxis, :, :]
|
|
|
|
return im, label
|
|
|
|
else:
|
|
|
|
im, label = self.transforms(im=image_path, label=label_path)
|
|
|
|
if self.edge:
|
|
|
|
edge_mask = F.mask_to_binary_edge(
|
|
|
|
label, radius=2, num_classes=self.num_classes)
|
|
|
|
return im, label, edge_mask
|
|
|
|
else:
|
|
|
|
return im, label
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.file_list)
|