You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
258 lines
9.3 KiB
258 lines
9.3 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import inspect
|
||
|
import copy
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
import paddlers.transforms as T
|
||
|
from testing_utils import CpuCommonTest
|
||
|
from data import build_input_from_file
|
||
|
|
||
|
WHITE_LIST = []
|
||
|
|
||
|
|
||
|
def _add_op_tests(cls):
|
||
|
"""
|
||
|
Automatically patch testing functions for transform operators.
|
||
|
"""
|
||
|
|
||
|
for op_name in T.operators.__all__:
|
||
|
op_class = getattr(T.operators, op_name)
|
||
|
if isinstance(op_class, type) and issubclass(op_class,
|
||
|
T.operators.Transform):
|
||
|
if op_class is T.DecodeImg or op_class in WHITE_LIST or op_name in WHITE_LIST:
|
||
|
continue
|
||
|
attr_name = 'test_' + op_name
|
||
|
if hasattr(cls, attr_name):
|
||
|
continue
|
||
|
# If the operator cannot be initialized with default parameters, skip it
|
||
|
for key, param in inspect.signature(
|
||
|
op_class.__init__).parameters.items():
|
||
|
if key == 'self':
|
||
|
continue
|
||
|
if param.default is param.empty:
|
||
|
break
|
||
|
else:
|
||
|
filter_ = OP2FILTER.get(op_name, None)
|
||
|
setattr(
|
||
|
cls, attr_name, make_test_func(
|
||
|
op_class, filter_=filter_))
|
||
|
return cls
|
||
|
|
||
|
|
||
|
def make_test_func(op_class,
|
||
|
*args,
|
||
|
in_hook=None,
|
||
|
out_hook=None,
|
||
|
filter_=None,
|
||
|
**kwargs):
|
||
|
def _test_func(self):
|
||
|
op = op_class(*args, **kwargs)
|
||
|
decoder = T.DecodeImg()
|
||
|
inputs = map(decoder, copy.deepcopy(self.inputs))
|
||
|
for i, input_ in enumerate(inputs):
|
||
|
if filter_ is not None:
|
||
|
input_ = filter_(input_)
|
||
|
with self.subTest(i=i):
|
||
|
for sample in input_:
|
||
|
if in_hook:
|
||
|
sample = in_hook(sample)
|
||
|
sample = op(sample)
|
||
|
if out_hook:
|
||
|
sample = out_hook(sample)
|
||
|
|
||
|
return _test_func
|
||
|
|
||
|
|
||
|
class _InputFilter(object):
|
||
|
def __init__(self, conds):
|
||
|
self.conds = conds
|
||
|
|
||
|
def __call__(self, samples):
|
||
|
for sample in samples:
|
||
|
for cond in self.conds:
|
||
|
if cond(sample):
|
||
|
yield sample
|
||
|
|
||
|
def __or__(self, filter):
|
||
|
return _InputFilter(self.conds + filter.conds)
|
||
|
|
||
|
def __and__(self, filter):
|
||
|
return _InputFilter(
|
||
|
[cond for cond in self.conds if cond in filter.conds])
|
||
|
|
||
|
def get_sample(self, input):
|
||
|
return input[0]
|
||
|
|
||
|
|
||
|
def _is_optical(sample):
|
||
|
return sample['image'].shape[2] == 3
|
||
|
|
||
|
|
||
|
def _is_sar(sample):
|
||
|
return sample['image'].shape[2] == 1
|
||
|
|
||
|
|
||
|
def _is_multispectral(sample):
|
||
|
return sample['image'].shape[2] > 3
|
||
|
|
||
|
|
||
|
def _is_mt(sample):
|
||
|
return 'image2' in sample
|
||
|
|
||
|
|
||
|
_filter_only_optical = _InputFilter([_is_optical])
|
||
|
_filter_only_sar = _InputFilter([_is_sar])
|
||
|
_filter_only_multispectral = _InputFilter([_is_multispectral])
|
||
|
_filter_no_multispectral = _filter_only_optical | _filter_only_sar
|
||
|
_filter_no_sar = _filter_only_optical | _filter_only_multispectral
|
||
|
_filter_no_optical = _filter_only_sar | _filter_only_multispectral
|
||
|
_filter_only_mt = _InputFilter([_is_mt])
|
||
|
|
||
|
OP2FILTER = {
|
||
|
'RandomSwap': _filter_only_mt,
|
||
|
'SelectBand': _filter_no_sar,
|
||
|
'Dehaze': _filter_only_optical,
|
||
|
'Normalize': _filter_only_optical,
|
||
|
'RandomDistort': _filter_only_optical
|
||
|
}
|
||
|
|
||
|
|
||
|
@_add_op_tests
|
||
|
class TestTransform(CpuCommonTest):
|
||
|
def setUp(self):
|
||
|
self.inputs = [
|
||
|
build_input_from_file(
|
||
|
'data/ssst/test_optical_clas.txt',
|
||
|
prefix='./data/ssst'), build_input_from_file(
|
||
|
'data/ssst/test_sar_clas.txt',
|
||
|
prefix='./data/ssst'), build_input_from_file(
|
||
|
'data/ssst/test_multispectral_clas.txt',
|
||
|
prefix='./data/ssst'), build_input_from_file(
|
||
|
'data/ssst/test_optical_seg.txt',
|
||
|
prefix='./data/ssst'), build_input_from_file(
|
||
|
'data/ssst/test_sar_seg.txt',
|
||
|
prefix='./data/ssst'), build_input_from_file(
|
||
|
'data/ssst/test_multispectral_seg.txt',
|
||
|
prefix='./data/ssst'),
|
||
|
build_input_from_file(
|
||
|
'data/ssst/test_optical_det.txt',
|
||
|
prefix='./data/ssst',
|
||
|
label_list='data/ssst/labels_det.txt'), build_input_from_file(
|
||
|
'data/ssst/test_sar_det.txt',
|
||
|
prefix='./data/ssst',
|
||
|
label_list='data/ssst/labels_det.txt'),
|
||
|
build_input_from_file(
|
||
|
'data/ssst/test_multispectral_det.txt',
|
||
|
prefix='./data/ssst',
|
||
|
label_list='data/ssst/labels_det.txt'), build_input_from_file(
|
||
|
'data/ssmt/test_mixed_binary.txt',
|
||
|
prefix='./data/ssmt'), build_input_from_file(
|
||
|
'data/ssmt/test_mixed_multiclass.txt',
|
||
|
prefix='./data/ssmt'), build_input_from_file(
|
||
|
'data/ssmt/test_mixed_multitask.txt',
|
||
|
prefix='./data/ssmt')
|
||
|
]
|
||
|
|
||
|
def test_DecodeImg(self):
|
||
|
decoder = T.DecodeImg(to_rgb=True)
|
||
|
for i, input in enumerate(self.inputs):
|
||
|
with self.subTest(i=i):
|
||
|
for sample in input:
|
||
|
sample = decoder(sample)
|
||
|
# Check type
|
||
|
self.assertIsInstance(sample['image'], np.ndarray)
|
||
|
if 'mask' in sample:
|
||
|
self.assertIsInstance(sample['mask'], np.ndarray)
|
||
|
if 'aux_masks' in sample:
|
||
|
for aux_mask in sample['aux_masks']:
|
||
|
self.assertIsInstance(aux_mask, np.ndarray)
|
||
|
# TODO: Check dtype
|
||
|
|
||
|
def test_Resize(self):
|
||
|
TARGET_SIZE = (128, 128)
|
||
|
|
||
|
def _in_hook(sample):
|
||
|
self.image_shape = sample['image'].shape
|
||
|
if 'mask' in sample:
|
||
|
self.mask_shape = sample['mask'].shape
|
||
|
self.mask_values = set(sample['mask'].ravel())
|
||
|
if 'aux_masks' in sample:
|
||
|
self.aux_mask_shapes = [
|
||
|
aux_mask.shape for aux_mask in sample['aux_masks']
|
||
|
]
|
||
|
self.aux_mask_values = [
|
||
|
set(aux_mask.ravel()) for aux_mask in sample['aux_masks']
|
||
|
]
|
||
|
return sample
|
||
|
|
||
|
def _out_hook_not_keep_ratio(sample):
|
||
|
self.check_output_equal(sample['image'].shape[:2], TARGET_SIZE)
|
||
|
if 'image2' in sample:
|
||
|
self.check_output_equal(sample['image2'].shape[:2], TARGET_SIZE)
|
||
|
if 'mask' in sample:
|
||
|
self.check_output_equal(sample['mask'].shape[:2], TARGET_SIZE)
|
||
|
self.assertLessEqual(
|
||
|
set(sample['mask'].ravel()), self.mask_values)
|
||
|
if 'aux_masks' in sample:
|
||
|
for aux_mask in sample['aux_masks']:
|
||
|
self.check_output_equal(aux_mask.shape[:2], TARGET_SIZE)
|
||
|
for aux_mask, amv in zip(sample['aux_masks'],
|
||
|
self.aux_mask_values):
|
||
|
self.assertLessEqual(set(aux_mask.ravel()), amv)
|
||
|
# TODO: Test gt_bbox and gt_poly
|
||
|
return sample
|
||
|
|
||
|
def _out_hook_keep_ratio(sample):
|
||
|
def __check_ratio(shape1, shape2):
|
||
|
self.check_output_equal(shape1[0] / shape1[1],
|
||
|
shape2[0] / shape2[1])
|
||
|
|
||
|
__check_ratio(sample['image'].shape, self.image_shape)
|
||
|
if 'image2' in sample:
|
||
|
__check_ratio(sample['image2'].shape, self.image_shape)
|
||
|
if 'mask' in sample:
|
||
|
__check_ratio(sample['mask'].shape, self.mask_shape)
|
||
|
if 'aux_masks' in sample:
|
||
|
for aux_mask, ori_aux_mask_shape in zip(sample['aux_masks'],
|
||
|
self.aux_mask_shapes):
|
||
|
__check_ratio(aux_mask.shape, ori_aux_mask_shape)
|
||
|
# TODO: Test gt_bbox and gt_poly
|
||
|
return sample
|
||
|
|
||
|
test_func_not_keep_ratio = make_test_func(
|
||
|
T.Resize,
|
||
|
in_hook=_in_hook,
|
||
|
out_hook=_out_hook_not_keep_ratio,
|
||
|
target_size=TARGET_SIZE,
|
||
|
keep_ratio=False)
|
||
|
test_func_not_keep_ratio(self)
|
||
|
test_func_keep_ratio = make_test_func(
|
||
|
T.Resize,
|
||
|
in_hook=_in_hook,
|
||
|
out_hook=_out_hook_keep_ratio,
|
||
|
target_size=TARGET_SIZE,
|
||
|
keep_ratio=True)
|
||
|
test_func_keep_ratio(self)
|
||
|
|
||
|
|
||
|
class TestCompose(CpuCommonTest):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestArrange(CpuCommonTest):
|
||
|
pass
|