|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import time
|
|
|
|
|
|
|
|
import paddlers.utils.logging as logging
|
|
|
|
from paddlers.utils import is_pic
|
|
|
|
from .det_metrics.coco_utils import loadRes
|
|
|
|
|
|
|
|
|
|
|
|
def visualize_detection(image, result, threshold=0.5, save_dir='./',
|
|
|
|
color=None):
|
|
|
|
"""
|
|
|
|
Visualize bbox and mask results
|
|
|
|
"""
|
|
|
|
|
|
|
|
if isinstance(image, np.ndarray):
|
|
|
|
image_name = str(int(time.time() * 1000)) + '.jpg'
|
|
|
|
else:
|
|
|
|
image_name = os.path.split(image)[-1]
|
|
|
|
image = cv2.imread(image)
|
|
|
|
image = draw_bbox_mask(image, result, threshold=threshold, color_map=color)
|
|
|
|
if save_dir is not None:
|
|
|
|
if not os.path.exists(save_dir):
|
|
|
|
os.makedirs(save_dir)
|
|
|
|
out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name))
|
|
|
|
cv2.imwrite(out_path, image)
|
|
|
|
logging.info('The visualized result is saved at {}'.format(out_path))
|
|
|
|
else:
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def visualize_segmentation(image, result, weight=0.6, save_dir='./',
|
|
|
|
color=None):
|
|
|
|
"""
|
|
|
|
Convert segment result to color image, and save added image.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image (str): Path of original image.
|
|
|
|
result (dict): Predicted results.
|
|
|
|
weight (float, optional): Weight used to mix the original image with the predicted image.
|
|
|
|
Defaults to 0.6.
|
|
|
|
save_dir (str, optional): Directory for saving visualized image. Defaults to './'.
|
|
|
|
color (list|None): None or list of BGR indices for each label. Defaults to None.
|
|
|
|
"""
|
|
|
|
|
|
|
|
label_map = result['label_map'].astype("uint8")
|
|
|
|
color_map = get_color_map_list(256)
|
|
|
|
if color is not None:
|
|
|
|
for i in range(len(color) // 3):
|
|
|
|
color_map[i] = color[i * 3:(i + 1) * 3]
|
|
|
|
color_map = np.array(color_map).astype("uint8")
|
|
|
|
|
|
|
|
# Use OpenCV LUT for color mapping
|
|
|
|
c1 = cv2.LUT(label_map, color_map[:, 0])
|
|
|
|
c2 = cv2.LUT(label_map, color_map[:, 1])
|
|
|
|
c3 = cv2.LUT(label_map, color_map[:, 2])
|
|
|
|
pseudo_img = np.dstack((c1, c2, c3))
|
|
|
|
|
|
|
|
if isinstance(image, np.ndarray):
|
|
|
|
im = image
|
|
|
|
image_name = str(int(time.time() * 1000)) + '.jpg'
|
|
|
|
if image.shape[2] != 3:
|
|
|
|
logging.info(
|
|
|
|
"The image is not 3-channel array, so predicted label map is shown as a pseudo color image."
|
|
|
|
)
|
|
|
|
weight = 0.
|
|
|
|
else:
|
|
|
|
image_name = os.path.split(image)[-1]
|
|
|
|
if not is_pic(image):
|
|
|
|
logging.info(
|
|
|
|
"The image cannot be opened by opencv, so predicted label map is shown as a pseudo color image."
|
|
|
|
)
|
|
|
|
image_name = image_name.split('.')[0] + '.jpg'
|
|
|
|
weight = 0.
|
|
|
|
else:
|
|
|
|
im = cv2.imread(image)
|
|
|
|
|
|
|
|
if abs(weight) < 1e-5:
|
|
|
|
vis_result = pseudo_img
|
|
|
|
else:
|
|
|
|
vis_result = cv2.addWeighted(im, weight,
|
|
|
|
pseudo_img.astype(im.dtype), 1 - weight, 0)
|
|
|
|
|
|
|
|
if save_dir is not None:
|
|
|
|
if not os.path.exists(save_dir):
|
|
|
|
os.makedirs(save_dir)
|
|
|
|
out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name))
|
|
|
|
cv2.imwrite(out_path, vis_result)
|
|
|
|
logging.info('The visualized result is saved as {}'.format(out_path))
|
|
|
|
else:
|
|
|
|
return vis_result
|
|
|
|
|
|
|
|
|
|
|
|
def get_color_map_list(num_classes):
|
|
|
|
"""
|
|
|
|
Get the color map for visualizing a segmentation mask.
|
|
|
|
This function supports arbitrary number of classes.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_classes (int): Number of classes.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: Color map.
|
|
|
|
"""
|
|
|
|
|
|
|
|
color_map = num_classes * [0, 0, 0]
|
|
|
|
for i in range(0, num_classes):
|
|
|
|
j = 0
|
|
|
|
lab = i
|
|
|
|
while lab:
|
|
|
|
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
|
|
|
|
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
|
|
|
|
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
|
|
|
|
j += 1
|
|
|
|
lab >>= 3
|
|
|
|
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
|
|
|
|
return color_map
|
|
|
|
|
|
|
|
|
|
|
|
def expand_boxes(boxes, scale):
|
|
|
|
"""
|
|
|
|
Expand an array of boxes by a given scale.
|
|
|
|
"""
|
|
|
|
w_half = (boxes[:, 2] - boxes[:, 0]) * .5
|
|
|
|
h_half = (boxes[:, 3] - boxes[:, 1]) * .5
|
|
|
|
x_c = (boxes[:, 2] + boxes[:, 0]) * .5
|
|
|
|
y_c = (boxes[:, 3] + boxes[:, 1]) * .5
|
|
|
|
|
|
|
|
w_half *= scale
|
|
|
|
h_half *= scale
|
|
|
|
|
|
|
|
boxes_exp = np.zeros(boxes.shape)
|
|
|
|
boxes_exp[:, 0] = x_c - w_half
|
|
|
|
boxes_exp[:, 2] = x_c + w_half
|
|
|
|
boxes_exp[:, 1] = y_c - h_half
|
|
|
|
boxes_exp[:, 3] = y_c + h_half
|
|
|
|
|
|
|
|
return boxes_exp
|
|
|
|
|
|
|
|
|
|
|
|
def clip_bbox(bbox):
|
|
|
|
xmin = max(min(bbox[0], 1.), 0.)
|
|
|
|
ymin = max(min(bbox[1], 1.), 0.)
|
|
|
|
xmax = max(min(bbox[2], 1.), 0.)
|
|
|
|
ymax = max(min(bbox[3], 1.), 0.)
|
|
|
|
return xmin, ymin, xmax, ymax
|
|
|
|
|
|
|
|
|
|
|
|
def draw_bbox_mask(image, results, threshold=0.5, color_map=None):
|
|
|
|
_SMALL_OBJECT_AREA_THRESH = 1000
|
|
|
|
height, width = image.shape[:2]
|
|
|
|
default_font_scale = max(np.sqrt(height * width) // 900, .5)
|
|
|
|
linewidth = max(default_font_scale / 40, 2)
|
|
|
|
|
|
|
|
labels = list()
|
|
|
|
for dt in results:
|
|
|
|
if dt['category'] not in labels:
|
|
|
|
labels.append(dt['category'])
|
|
|
|
|
|
|
|
if color_map is None:
|
|
|
|
color_map = get_color_map_list(len(labels) + 2)[2:]
|
|
|
|
else:
|
|
|
|
color_map = np.asarray(color_map)
|
|
|
|
if color_map.shape[0] != len(labels) or color_map.shape[1] != 3:
|
|
|
|
raise ValueError(
|
|
|
|
"The shape for color_map is required to be {}x3, but recieved shape is {}x{}.".
|
|
|
|
format(len(labels), color_map.shape))
|
|
|
|
if np.max(color_map) > 255 or np.min(color_map) < 0:
|
|
|
|
raise ValueError(
|
|
|
|
" The values in color_map should be within 0-255 range.")
|
|
|
|
|
|
|
|
keep_results = []
|
|
|
|
areas = []
|
|
|
|
for dt in results:
|
|
|
|
cname, bbox, score = dt['category'], dt['bbox'], dt['score']
|
|
|
|
if score < threshold:
|
|
|
|
continue
|
|
|
|
keep_results.append(dt)
|
|
|
|
areas.append(bbox[2] * bbox[3])
|
|
|
|
areas = np.asarray(areas)
|
|
|
|
sorted_idxs = np.argsort(-areas).tolist()
|
|
|
|
keep_results = [keep_results[k]
|
|
|
|
for k in sorted_idxs] if keep_results else []
|
|
|
|
|
|
|
|
for dt in keep_results:
|
|
|
|
cname, bbox, score = dt['category'], dt['bbox'], dt['score']
|
|
|
|
bbox = list(map(int, bbox))
|
|
|
|
xmin, ymin, w, h = bbox
|
|
|
|
xmax = xmin + w
|
|
|
|
ymax = ymin + h
|
|
|
|
|
|
|
|
color = tuple(map(int, color_map[labels.index(cname)]))
|
|
|
|
# Draw bbox
|
|
|
|
image = cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color,
|
|
|
|
linewidth)
|
|
|
|
|
|
|
|
# Draw mask
|
|
|
|
if 'mask' in dt:
|
|
|
|
mask = dt['mask'] * 255
|
|
|
|
image = image.astype('float32')
|
|
|
|
alpha = .7
|
|
|
|
w_ratio = .4
|
|
|
|
color_mask = np.asarray(color, dtype=int)
|
|
|
|
for c in range(3):
|
|
|
|
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
|
|
|
|
idx = np.nonzero(mask)
|
|
|
|
image[idx[0], idx[1], :] *= 1.0 - alpha
|
|
|
|
image[idx[0], idx[1], :] += alpha * color_mask
|
|
|
|
image = image.astype("uint8")
|
|
|
|
contours = cv2.findContours(
|
|
|
|
mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)[-2]
|
|
|
|
image = cv2.drawContours(
|
|
|
|
image,
|
|
|
|
contours,
|
|
|
|
contourIdx=-1,
|
|
|
|
color=color,
|
|
|
|
thickness=1,
|
|
|
|
lineType=cv2.LINE_AA)
|
|
|
|
|
|
|
|
# Draw label
|
|
|
|
text_pos = (xmin, ymin)
|
|
|
|
instance_area = w * h
|
|
|
|
if (instance_area < _SMALL_OBJECT_AREA_THRESH or h < 40):
|
|
|
|
if ymin >= height - 5:
|
|
|
|
text_pos = (xmin, ymin)
|
|
|
|
else:
|
|
|
|
text_pos = (xmin, ymax)
|
|
|
|
height_ratio = h / np.sqrt(height * width)
|
|
|
|
font_scale = (np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2,
|
|
|
|
2) * 0.5 * default_font_scale)
|
|
|
|
text = "{} {:.2f}".format(cname, score)
|
|
|
|
(tw, th), baseline = cv2.getTextSize(
|
|
|
|
text,
|
|
|
|
fontFace=cv2.FONT_HERSHEY_DUPLEX,
|
|
|
|
fontScale=font_scale,
|
|
|
|
thickness=1)
|
|
|
|
image = cv2.rectangle(
|
|
|
|
image,
|
|
|
|
text_pos, (text_pos[0] + tw, text_pos[1] + th + baseline),
|
|
|
|
color=color,
|
|
|
|
thickness=-1)
|
|
|
|
image = cv2.putText(
|
|
|
|
image,
|
|
|
|
text, (text_pos[0], text_pos[1] + th),
|
|
|
|
fontFace=cv2.FONT_HERSHEY_DUPLEX,
|
|
|
|
fontScale=font_scale,
|
|
|
|
color=(255, 255, 255),
|
|
|
|
thickness=1,
|
|
|
|
lineType=cv2.LINE_AA)
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def draw_pr_curve(eval_details_file=None,
|
|
|
|
gt=None,
|
|
|
|
pred_bbox=None,
|
|
|
|
pred_mask=None,
|
|
|
|
iou_thresh=0.5,
|
|
|
|
save_dir='./'):
|
|
|
|
if eval_details_file is not None:
|
|
|
|
import json
|
|
|
|
with open(eval_details_file, 'r') as f:
|
|
|
|
eval_details = json.load(f)
|
|
|
|
pred_bbox = eval_details['bbox']
|
|
|
|
if 'mask' in eval_details:
|
|
|
|
pred_mask = eval_details['mask']
|
|
|
|
gt = eval_details['gt']
|
|
|
|
if gt is None or pred_bbox is None:
|
|
|
|
raise ValueError(
|
|
|
|
"gt/pred_bbox/pred_mask is None now, please set right eval_details_file or gt/pred_bbox/pred_mask."
|
|
|
|
)
|
|
|
|
if pred_bbox is not None and len(pred_bbox) == 0:
|
|
|
|
raise ValueError("There is no predicted bbox.")
|
|
|
|
if pred_mask is not None and len(pred_mask) == 0:
|
|
|
|
raise ValueError("There is no predicted mask.")
|
|
|
|
import matplotlib
|
|
|
|
matplotlib.use('Agg')
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from pycocotools.coco import COCO
|
|
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
coco = COCO()
|
|
|
|
coco.dataset = gt
|
|
|
|
coco.createIndex()
|
|
|
|
|
|
|
|
def _summarize(coco_gt, ap=1, iouThr=None, areaRng='all', maxDets=100):
|
|
|
|
"""
|
|
|
|
This function has the same functionality as _summarize() in
|
|
|
|
pycocotools.COCOeval.summarize().
|
|
|
|
|
|
|
|
Refer to
|
|
|
|
https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/cocoeval.py#L427,
|
|
|
|
"""
|
|
|
|
p = coco_gt.params
|
|
|
|
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
|
|
|
|
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
|
|
|
|
if ap == 1:
|
|
|
|
# Dimension of precision: [TxRxKxAxM]
|
|
|
|
s = coco_gt.eval['precision']
|
|
|
|
# IoU
|
|
|
|
if iouThr is not None:
|
|
|
|
t = np.where(iouThr == p.iouThrs)[0]
|
|
|
|
s = s[t]
|
|
|
|
s = s[:, :, :, aind, mind]
|
|
|
|
else:
|
|
|
|
# Dimension of recall: [TxKxAxM]
|
|
|
|
s = coco_gt.eval['recall']
|
|
|
|
if iouThr is not None:
|
|
|
|
t = np.where(iouThr == p.iouThrs)[0]
|
|
|
|
s = s[t]
|
|
|
|
s = s[:, :, aind, mind]
|
|
|
|
if len(s[s > -1]) == 0:
|
|
|
|
mean_s = -1
|
|
|
|
else:
|
|
|
|
mean_s = np.mean(s[s > -1])
|
|
|
|
return mean_s
|
|
|
|
|
|
|
|
def cal_pr(coco_gt, coco_dt, iou_thresh, save_dir, style='bbox'):
|
|
|
|
coco_dt = loadRes(coco_gt, coco_dt)
|
|
|
|
coco_eval = COCOeval(coco_gt, coco_dt, style)
|
|
|
|
coco_eval.params.iouThrs = np.linspace(
|
|
|
|
iou_thresh, iou_thresh, 1, endpoint=True)
|
|
|
|
coco_eval.evaluate()
|
|
|
|
coco_eval.accumulate()
|
|
|
|
stats = _summarize(coco_eval, iouThr=iou_thresh)
|
|
|
|
catIds = coco_gt.getCatIds()
|
|
|
|
if len(catIds) != coco_eval.eval['precision'].shape[2]:
|
|
|
|
raise ValueError(
|
|
|
|
"The category number must be same as the third dimension of precisions."
|
|
|
|
)
|
|
|
|
x = np.arange(0.0, 1.01, 0.01)
|
|
|
|
color_map = get_color_map_list(256)[1:256]
|
|
|
|
|
|
|
|
plt.subplot(1, 2, 1)
|
|
|
|
plt.title(style + " precision-recall IoU={}".format(iou_thresh))
|
|
|
|
plt.xlabel("recall")
|
|
|
|
plt.ylabel("precision")
|
|
|
|
plt.xlim(0, 1.01)
|
|
|
|
plt.ylim(0, 1.01)
|
|
|
|
plt.grid(linestyle='--', linewidth=1)
|
|
|
|
plt.plot([0, 1], [0, 1], 'r--', linewidth=1)
|
|
|
|
my_x_ticks = np.arange(0, 1.01, 0.1)
|
|
|
|
my_y_ticks = np.arange(0, 1.01, 0.1)
|
|
|
|
plt.xticks(my_x_ticks, fontsize=5)
|
|
|
|
plt.yticks(my_y_ticks, fontsize=5)
|
|
|
|
for idx, catId in enumerate(catIds):
|
|
|
|
pr_array = coco_eval.eval['precision'][0, :, idx, 0, 2]
|
|
|
|
precision = pr_array[pr_array > -1]
|
|
|
|
ap = np.mean(precision) if precision.size else float('nan')
|
|
|
|
nm = coco_gt.loadCats(catId)[0]['name'] + ' AP={:0.2f}'.format(
|
|
|
|
float(ap * 100))
|
|
|
|
color = tuple(color_map[idx])
|
|
|
|
color = [float(c) / 255 for c in color]
|
|
|
|
color.append(0.75)
|
|
|
|
plt.plot(x, pr_array, color=color, label=nm, linewidth=1)
|
|
|
|
plt.legend(loc="lower left", fontsize=5)
|
|
|
|
|
|
|
|
plt.subplot(1, 2, 2)
|
|
|
|
plt.title(style + " score-recall IoU={}".format(iou_thresh))
|
|
|
|
plt.xlabel('recall')
|
|
|
|
plt.ylabel('score')
|
|
|
|
plt.xlim(0, 1.01)
|
|
|
|
plt.ylim(0, 1.01)
|
|
|
|
plt.grid(linestyle='--', linewidth=1)
|
|
|
|
plt.xticks(my_x_ticks, fontsize=5)
|
|
|
|
plt.yticks(my_y_ticks, fontsize=5)
|
|
|
|
for idx, catId in enumerate(catIds):
|
|
|
|
nm = coco_gt.loadCats(catId)[0]['name']
|
|
|
|
sr_array = coco_eval.eval['scores'][0, :, idx, 0, 2]
|
|
|
|
color = tuple(color_map[idx])
|
|
|
|
color = [float(c) / 255 for c in color]
|
|
|
|
color.append(0.75)
|
|
|
|
plt.plot(x, sr_array, color=color, label=nm, linewidth=1)
|
|
|
|
plt.legend(loc="lower left", fontsize=5)
|
|
|
|
plt.savefig(
|
|
|
|
os.path.join(save_dir,
|
|
|
|
"./{}_pr_curve(iou-{}).png".format(style, iou_thresh)),
|
|
|
|
dpi=800)
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
if not os.path.exists(save_dir):
|
|
|
|
os.makedirs(save_dir)
|
|
|
|
cal_pr(coco, pred_bbox, iou_thresh, save_dir, style='bbox')
|
|
|
|
if pred_mask is not None:
|
|
|
|
cal_pr(coco, pred_mask, iou_thresh, save_dir, style='segm')
|