|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
class Topk(object):
|
|
|
|
def __init__(self, topk=1, class_id_map_file=None):
|
|
|
|
assert isinstance(topk, (int, ))
|
|
|
|
self.class_id_map = self.parse_class_id_map(class_id_map_file)
|
|
|
|
self.topk = topk
|
|
|
|
|
|
|
|
def parse_class_id_map(self, class_id_map_file):
|
|
|
|
if class_id_map_file is None:
|
|
|
|
return None
|
|
|
|
if not os.path.exists(class_id_map_file):
|
|
|
|
print(
|
|
|
|
"Warning: If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!"
|
|
|
|
)
|
|
|
|
return None
|
|
|
|
|
|
|
|
try:
|
|
|
|
class_id_map = {}
|
|
|
|
with open(class_id_map_file, "r") as fin:
|
|
|
|
lines = fin.readlines()
|
|
|
|
for line in lines:
|
|
|
|
partition = line.split("\n")[0].partition(" ")
|
|
|
|
class_id_map[int(partition[0])] = str(partition[-1])
|
|
|
|
except Exception as ex:
|
|
|
|
print(ex)
|
|
|
|
class_id_map = None
|
|
|
|
return class_id_map
|
|
|
|
|
|
|
|
def __call__(self, x, file_names=None, multilabel=False):
|
|
|
|
assert isinstance(x, paddle.Tensor)
|
|
|
|
if file_names is not None:
|
|
|
|
assert x.shape[0] == len(file_names)
|
|
|
|
x = F.softmax(x, axis=-1) if not multilabel else F.sigmoid(x)
|
|
|
|
x = x.numpy()
|
|
|
|
y = []
|
|
|
|
for idx, probs in enumerate(x):
|
|
|
|
index = probs.argsort(axis=0)[-self.topk:][::-1].astype(
|
|
|
|
"int32") if not multilabel else np.where(
|
|
|
|
probs >= 0.5)[0].astype("int32")
|
|
|
|
clas_id_list = []
|
|
|
|
score_list = []
|
|
|
|
label_name_list = []
|
|
|
|
for i in index:
|
|
|
|
clas_id_list.append(i.item())
|
|
|
|
score_list.append(probs[i].item())
|
|
|
|
if self.class_id_map is not None:
|
|
|
|
label_name_list.append(self.class_id_map[i.item()])
|
|
|
|
result = {
|
|
|
|
"class_ids": clas_id_list,
|
|
|
|
"scores": np.around(
|
|
|
|
score_list, decimals=5).tolist(),
|
|
|
|
}
|
|
|
|
if file_names is not None:
|
|
|
|
result["file_name"] = file_names[idx]
|
|
|
|
if label_name_list is not None:
|
|
|
|
result["label_names"] = label_name_list
|
|
|
|
y.append(result)
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class MultiLabelTopk(Topk):
|
|
|
|
def __init__(self, topk=1, class_id_map_file=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def __call__(self, x, file_names=None):
|
|
|
|
return super().__call__(x, file_names, multilabel=True)
|