|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
class _SpectralNorm(nn.SpectralNorm):
|
|
|
|
def __init__(self,
|
|
|
|
weight_shape,
|
|
|
|
dim=0,
|
|
|
|
power_iters=1,
|
|
|
|
eps=1e-12,
|
|
|
|
dtype='float32'):
|
|
|
|
super(_SpectralNorm, self).__init__(weight_shape, dim, power_iters, eps,
|
|
|
|
dtype)
|
|
|
|
|
|
|
|
def forward(self, weight):
|
|
|
|
inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
|
|
|
|
out = self._helper.create_variable_for_type_inference(self._dtype)
|
|
|
|
_power_iters = self._power_iters if self.training else 0
|
|
|
|
self._helper.append_op(
|
|
|
|
type="spectral_norm",
|
|
|
|
inputs=inputs,
|
|
|
|
outputs={"Out": out, },
|
|
|
|
attrs={
|
|
|
|
"dim": self._dim,
|
|
|
|
"power_iters": _power_iters,
|
|
|
|
"eps": self._eps,
|
|
|
|
})
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class Spectralnorm(paddle.nn.Layer):
|
|
|
|
def __init__(self, layer, dim=0, power_iters=1, eps=1e-12, dtype='float32'):
|
|
|
|
super(Spectralnorm, self).__init__()
|
|
|
|
self.spectral_norm = _SpectralNorm(layer.weight.shape, dim, power_iters,
|
|
|
|
eps, dtype)
|
|
|
|
self.dim = dim
|
|
|
|
self.power_iters = power_iters
|
|
|
|
self.eps = eps
|
|
|
|
self.layer = layer
|
|
|
|
weight = layer._parameters['weight']
|
|
|
|
del layer._parameters['weight']
|
|
|
|
self.weight_orig = self.create_parameter(
|
|
|
|
weight.shape, dtype=weight.dtype)
|
|
|
|
self.weight_orig.set_value(weight)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
weight = self.spectral_norm(self.weight_orig)
|
|
|
|
self.layer.weight = weight
|
|
|
|
out = self.layer(x)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class RhoClipper(object):
|
|
|
|
def __init__(self, min, max):
|
|
|
|
self.clip_min = min
|
|
|
|
self.clip_max = max
|
|
|
|
assert min < max
|
|
|
|
|
|
|
|
def __call__(self, module):
|
|
|
|
|
|
|
|
if hasattr(module, 'rho'):
|
|
|
|
w = module.rho
|
|
|
|
w = w.clip(self.clip_min, self.clip_max)
|
|
|
|
module.rho.set_value(w)
|
|
|
|
|
|
|
|
# used for photo2cartoon training
|
|
|
|
if hasattr(module, 'w_gamma'):
|
|
|
|
w = module.w_gamma
|
|
|
|
w = w.clip(self.clip_min, self.clip_max)
|
|
|
|
module.w_gamma.set_value(w)
|
|
|
|
|
|
|
|
if hasattr(module, 'w_beta'):
|
|
|
|
w = module.w_beta
|
|
|
|
w = w.clip(self.clip_min, self.clip_max)
|
|
|
|
module.w_beta.set_value(w)
|