|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
import os.path as osp
|
|
|
|
import numpy as np
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
from sklearn.decomposition import PCA
|
|
|
|
from joblib import dump
|
|
|
|
|
|
|
|
from utils import Raster, save_geotiff, time_it
|
|
|
|
|
|
|
|
|
|
|
|
@time_it
|
|
|
|
def pca_train(img_path, save_dir="output", dim=3):
|
|
|
|
raster = Raster(img_path)
|
|
|
|
im = raster.getArray()
|
|
|
|
n_im = np.reshape(im, (-1, raster.bands))
|
|
|
|
pca = PCA(n_components=dim, whiten=True)
|
|
|
|
pca_model = pca.fit(n_im)
|
|
|
|
if not osp.exists(save_dir):
|
|
|
|
os.makedirs(save_dir)
|
|
|
|
name = osp.splitext(osp.normpath(img_path).split(os.sep)[-1])[0]
|
|
|
|
model_save_path = osp.join(save_dir, (name + "_pca.joblib"))
|
|
|
|
image_save_path = osp.join(save_dir, (name + "_pca.tif"))
|
|
|
|
dump(pca_model, model_save_path) # Save model
|
|
|
|
output = pca_model.transform(n_im).reshape(
|
|
|
|
(raster.height, raster.width, -1))
|
|
|
|
save_geotiff(output, image_save_path, raster.proj, raster.geot) # Save tiff
|
|
|
|
print("The output image and the PCA model are saved in {}.".format(
|
|
|
|
save_dir))
|
|
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--im_path", type=str, required=True, \
|
|
|
|
help="Path of HSIs image.")
|
|
|
|
parser.add_argument("--save_dir", type=str, default="output", \
|
|
|
|
help="Directory to save PCA params(*.joblib). Default: output.")
|
|
|
|
parser.add_argument("--dim", type=int, default=3, \
|
|
|
|
help="Dimension to reduce to. Default: 3.")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parser.parse_args()
|
|
|
|
pca_train(args.im_path, args.save_dir, args.dim)
|