|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
'''
|
|
|
|
@File Description:
|
|
|
|
# 统计json文件images信息,生成统计结果csv,同时生成图像shape、图像shape比例的二维分布图
|
|
|
|
python ./coco_tools/json_ImgSta.py \
|
|
|
|
--json_path=./annotations/instances_val2017.json \
|
|
|
|
--csv_path=./img_sta/images.csv \
|
|
|
|
--png_shape_path=./img_sta/images_shape.png \
|
|
|
|
--png_shapeRate_path=./img_sta/images_shapeRate.png
|
|
|
|
'''
|
|
|
|
|
|
|
|
import json
|
|
|
|
import argparse
|
|
|
|
import os.path
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
import seaborn as sns
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
def check_dir(check_path,show=True):
|
|
|
|
if os.path.isdir(check_path):
|
|
|
|
check_directory = check_path
|
|
|
|
else:
|
|
|
|
check_directory = os.path.dirname(check_path)
|
|
|
|
if not os.path.exists(check_directory):
|
|
|
|
os.makedirs(check_directory)
|
|
|
|
if show:
|
|
|
|
print('make dir:',check_directory)
|
|
|
|
|
|
|
|
def js_img_sta(js_path, csv_path, png_shape_path, png_shapeRate_path, image_keyname):
|
|
|
|
print('json read...\n')
|
|
|
|
with open(js_path, 'r') as load_f:
|
|
|
|
data = json.load(load_f)
|
|
|
|
|
|
|
|
df_img = pd.DataFrame(data[image_keyname])
|
|
|
|
|
|
|
|
if png_shape_path is not None:
|
|
|
|
check_dir(png_shape_path)
|
|
|
|
sns.jointplot('height', 'width', data=df_img, kind='hex')
|
|
|
|
plt.savefig(png_shape_path)
|
|
|
|
plt.close()
|
|
|
|
print('png save to', png_shape_path)
|
|
|
|
if png_shapeRate_path is not None:
|
|
|
|
check_dir(png_shapeRate_path)
|
|
|
|
df_img['shape_rate'] = (df_img['width'] / df_img['height']).round(1)
|
|
|
|
df_img['shape_rate'].value_counts().sort_index().plot(kind='bar', title='images shape rate')
|
|
|
|
plt.savefig(png_shapeRate_path)
|
|
|
|
plt.close()
|
|
|
|
print('png save to', png_shapeRate_path)
|
|
|
|
|
|
|
|
if csv_path is not None:
|
|
|
|
check_dir(csv_path)
|
|
|
|
df_img.to_csv(csv_path)
|
|
|
|
print('csv save to', csv_path)
|
|
|
|
|
|
|
|
|
|
|
|
def get_args():
|
|
|
|
parser = argparse.ArgumentParser(description='Json Images Infomation Statistic')
|
|
|
|
|
|
|
|
# parameters
|
|
|
|
parser.add_argument('--json_path', type=str,
|
|
|
|
help='json path to statistic images information')
|
|
|
|
parser.add_argument('--csv_path', type=str, default=None,
|
|
|
|
help='csv path to save statistic images information, default None, do not save')
|
|
|
|
parser.add_argument('--png_shape_path', type=str, default=None,
|
|
|
|
help='png path to save statistic images shape information, default None, do not save')
|
|
|
|
parser.add_argument('--png_shapeRate_path', type=str, default=None,
|
|
|
|
help='png path to save statistic images shape rate information, default None, do not save')
|
|
|
|
parser.add_argument('--image_keyname', type=str, default='images',
|
|
|
|
help='image key name in json, default images')
|
|
|
|
parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
|
|
|
|
help='Args_show(default: True), if True, show args info')
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
if args.Args_show:
|
|
|
|
print('Args'.center(100, '-'))
|
|
|
|
for k, v in vars(args).items():
|
|
|
|
print('%s = %s' % (k, v))
|
|
|
|
print()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
args = get_args()
|
|
|
|
js_img_sta(args.json_path, args.csv_path, args.png_shape_path, args.png_shapeRate_path, args.image_keyname)
|
|
|
|
|