|
|
|
import os
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
|
|
|
|
|
|
import paddlers as pdrs
|
|
|
|
from paddlers import transforms as T
|
|
|
|
|
|
|
|
# 下载和解压视盘分割数据集
|
|
|
|
optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
|
|
|
|
pdrs.utils.download_and_decompress(optic_dataset, path='./')
|
|
|
|
|
|
|
|
# 定义训练和验证时的transforms
|
|
|
|
# API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/transforms/transforms.md
|
|
|
|
train_transforms = T.Compose([
|
|
|
|
T.Resize(target_size=512),
|
|
|
|
T.RandomHorizontalFlip(),
|
|
|
|
T.Normalize(
|
|
|
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
|
|
|
])
|
|
|
|
|
|
|
|
eval_transforms = T.Compose([
|
|
|
|
T.Resize(target_size=512),
|
|
|
|
T.Normalize(
|
|
|
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
|
|
|
])
|
|
|
|
|
|
|
|
# 定义训练和验证所用的数据集
|
|
|
|
# API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/datasets.md
|
|
|
|
train_dataset = pdrs.datasets.SegDataset(
|
|
|
|
data_dir='optic_disc_seg',
|
|
|
|
file_list='optic_disc_seg/train_list.txt',
|
|
|
|
label_list='optic_disc_seg/labels.txt',
|
|
|
|
transforms=train_transforms,
|
|
|
|
num_workers=0,
|
|
|
|
shuffle=True)
|
|
|
|
|
|
|
|
eval_dataset = pdrs.datasets.SegDataset(
|
|
|
|
data_dir='optic_disc_seg',
|
|
|
|
file_list='optic_disc_seg/val_list.txt',
|
|
|
|
label_list='optic_disc_seg/labels.txt',
|
|
|
|
transforms=eval_transforms,
|
|
|
|
num_workers=0,
|
|
|
|
shuffle=False)
|
|
|
|
|
|
|
|
# 初始化模型,并进行训练
|
|
|
|
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/paddlers/blob/develop/docs/visualdl.md
|
|
|
|
num_classes = len(train_dataset.labels)
|
|
|
|
model = pdrs.tasks.FarSeg(num_classes=num_classes)
|
|
|
|
|
|
|
|
# API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/models/semantic_segmentation.md
|
|
|
|
# 各参数介绍与调整说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/parameters.md
|
|
|
|
model.train(
|
|
|
|
num_epochs=10,
|
|
|
|
train_dataset=train_dataset,
|
|
|
|
train_batch_size=4,
|
|
|
|
eval_dataset=eval_dataset,
|
|
|
|
learning_rate=0.01,
|
|
|
|
pretrain_weights=None,
|
|
|
|
save_dir='output/farseg')
|