|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os.path as osp
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from paddle.inference import Config
|
|
|
|
from paddle.inference import create_predictor
|
|
|
|
from paddle.inference import PrecisionType
|
|
|
|
|
|
|
|
from paddlers.tasks import load_model
|
|
|
|
from paddlers.utils import logging, Timer
|
|
|
|
|
|
|
|
|
|
|
|
class Predictor(object):
|
|
|
|
def __init__(self,
|
|
|
|
model_dir,
|
|
|
|
use_gpu=False,
|
|
|
|
gpu_id=0,
|
|
|
|
cpu_thread_num=1,
|
|
|
|
use_mkl=True,
|
|
|
|
mkl_thread_num=4,
|
|
|
|
use_trt=False,
|
|
|
|
use_glog=False,
|
|
|
|
memory_optimize=True,
|
|
|
|
max_trt_batch_size=1,
|
|
|
|
trt_precision_mode='float32'):
|
|
|
|
"""
|
|
|
|
创建Paddle Predictor
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model_dir: 模型路径(必须是导出的部署或量化模型)。
|
|
|
|
use_gpu: 是否使用GPU,默认为False。
|
|
|
|
gpu_id: 使用GPU的ID,默认为0。
|
|
|
|
cpu_thread_num:使用cpu进行预测时的线程数,默认为1。
|
|
|
|
use_mkl: 是否使用mkldnn计算库,CPU情况下使用,默认为False。
|
|
|
|
mkl_thread_num: mkldnn计算线程数,默认为4。
|
|
|
|
use_trt: 是否使用TensorRT,默认为False。
|
|
|
|
use_glog: 是否启用glog日志, 默认为False。
|
|
|
|
memory_optimize: 是否启动内存优化,默认为True。
|
|
|
|
max_trt_batch_size: 在使用TensorRT时配置的最大batch size,默认为1。
|
|
|
|
trt_precision_mode:在使用TensorRT时采用的精度,可选值['float32', 'float16']。默认为'float32'。
|
|
|
|
"""
|
|
|
|
|
|
|
|
self.model_dir = model_dir
|
|
|
|
self._model = load_model(model_dir, with_net=False)
|
|
|
|
|
|
|
|
if trt_precision_mode.lower() == 'float32':
|
|
|
|
trt_precision_mode = PrecisionType.Float32
|
|
|
|
elif trt_precision_mode.lower() == 'float16':
|
|
|
|
trt_precision_mode = PrecisionType.Float16
|
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
"TensorRT precision mode {} is invalid. Supported modes are float32 and float16."
|
|
|
|
.format(trt_precision_mode),
|
|
|
|
exit=True)
|
|
|
|
|
|
|
|
self.predictor = self.create_predictor(
|
|
|
|
use_gpu=use_gpu,
|
|
|
|
gpu_id=gpu_id,
|
|
|
|
cpu_thread_num=cpu_thread_num,
|
|
|
|
use_mkl=use_mkl,
|
|
|
|
mkl_thread_num=mkl_thread_num,
|
|
|
|
use_trt=use_trt,
|
|
|
|
use_glog=use_glog,
|
|
|
|
memory_optimize=memory_optimize,
|
|
|
|
max_trt_batch_size=max_trt_batch_size,
|
|
|
|
trt_precision_mode=trt_precision_mode)
|
|
|
|
self.timer = Timer()
|
|
|
|
|
|
|
|
def create_predictor(self,
|
|
|
|
use_gpu=True,
|
|
|
|
gpu_id=0,
|
|
|
|
cpu_thread_num=1,
|
|
|
|
use_mkl=True,
|
|
|
|
mkl_thread_num=4,
|
|
|
|
use_trt=False,
|
|
|
|
use_glog=False,
|
|
|
|
memory_optimize=True,
|
|
|
|
max_trt_batch_size=1,
|
|
|
|
trt_precision_mode=PrecisionType.Float32):
|
|
|
|
config = Config(
|
|
|
|
osp.join(self.model_dir, 'model.pdmodel'),
|
|
|
|
osp.join(self.model_dir, 'model.pdiparams'))
|
|
|
|
|
|
|
|
if use_gpu:
|
|
|
|
# 设置GPU初始显存(单位M)和Device ID
|
|
|
|
config.enable_use_gpu(200, gpu_id)
|
|
|
|
config.switch_ir_optim(True)
|
|
|
|
if use_trt:
|
|
|
|
if self._model.model_type == 'segmenter':
|
|
|
|
logging.warning(
|
|
|
|
"Semantic segmentation models do not support TensorRT acceleration, "
|
|
|
|
"TensorRT is forcibly disabled.")
|
|
|
|
elif 'RCNN' in self._model.__class__.__name__:
|
|
|
|
logging.warning(
|
|
|
|
"RCNN models do not support TensorRT acceleration, "
|
|
|
|
"TensorRT is forcibly disabled.")
|
|
|
|
else:
|
|
|
|
config.enable_tensorrt_engine(
|
|
|
|
workspace_size=1 << 10,
|
|
|
|
max_batch_size=max_trt_batch_size,
|
|
|
|
min_subgraph_size=3,
|
|
|
|
precision_mode=trt_precision_mode,
|
|
|
|
use_static=False,
|
|
|
|
use_calib_mode=False)
|
|
|
|
else:
|
|
|
|
config.disable_gpu()
|
|
|
|
config.set_cpu_math_library_num_threads(cpu_thread_num)
|
|
|
|
if use_mkl:
|
|
|
|
if self._model.__class__.__name__ == 'MaskRCNN':
|
|
|
|
logging.warning(
|
|
|
|
"MaskRCNN does not support MKL-DNN, MKL-DNN is forcibly disabled"
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
# cache 10 different shapes for mkldnn to avoid memory leak
|
|
|
|
config.set_mkldnn_cache_capacity(10)
|
|
|
|
config.enable_mkldnn()
|
|
|
|
config.set_cpu_math_library_num_threads(mkl_thread_num)
|
|
|
|
except Exception as e:
|
|
|
|
logging.warning(
|
|
|
|
"The current environment does not support MKL-DNN, MKL-DNN is disabled."
|
|
|
|
)
|
|
|
|
pass
|
|
|
|
|
|
|
|
if not use_glog:
|
|
|
|
config.disable_glog_info()
|
|
|
|
if memory_optimize:
|
|
|
|
config.enable_memory_optim()
|
|
|
|
config.switch_use_feed_fetch_ops(False)
|
|
|
|
predictor = create_predictor(config)
|
|
|
|
return predictor
|
|
|
|
|
|
|
|
def preprocess(self, images, transforms):
|
|
|
|
preprocessed_samples = self._model._preprocess(
|
|
|
|
images, transforms, to_tensor=False)
|
|
|
|
if self._model.model_type == 'classifier':
|
|
|
|
preprocessed_samples = {'image': preprocessed_samples[0]}
|
|
|
|
elif self._model.model_type == 'segmenter':
|
|
|
|
preprocessed_samples = {
|
|
|
|
'image': preprocessed_samples[0],
|
|
|
|
'ori_shape': preprocessed_samples[1]
|
|
|
|
}
|
|
|
|
elif self._model.model_type == 'detector':
|
|
|
|
pass
|
|
|
|
elif self._model.model_type == 'changedetector':
|
|
|
|
preprocessed_samples = {
|
|
|
|
'image': preprocessed_samples[0],
|
|
|
|
'image2': preprocessed_samples[1],
|
|
|
|
'ori_shape': preprocessed_samples[2]
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
"Invalid model type {}".format(self._model.model_type),
|
|
|
|
exit=True)
|
|
|
|
return preprocessed_samples
|
|
|
|
|
|
|
|
def postprocess(self, net_outputs, topk=1, ori_shape=None, transforms=None):
|
|
|
|
if self._model.model_type == 'classifier':
|
|
|
|
true_topk = min(self._model.num_classes, topk)
|
|
|
|
preds = self._model._postprocess(net_outputs[0], true_topk)
|
|
|
|
elif self._model.model_type in ('segmenter', 'changedetector'):
|
|
|
|
label_map, score_map = self._model._postprocess(
|
|
|
|
net_outputs,
|
|
|
|
batch_origin_shape=ori_shape,
|
|
|
|
transforms=transforms.transforms)
|
|
|
|
preds = [{
|
|
|
|
'label_map': l,
|
|
|
|
'score_map': s
|
|
|
|
} for l, s in zip(label_map, score_map)]
|
|
|
|
elif self._model.model_type == 'detector':
|
|
|
|
net_outputs = {
|
|
|
|
k: v
|
|
|
|
for k, v in zip(['bbox', 'bbox_num', 'mask'], net_outputs)
|
|
|
|
}
|
|
|
|
preds = self._model._postprocess(net_outputs)
|
|
|
|
else:
|
|
|
|
logging.error(
|
|
|
|
"Invalid model type {}.".format(self._model.model_type),
|
|
|
|
exit=True)
|
|
|
|
|
|
|
|
return preds
|
|
|
|
|
|
|
|
def raw_predict(self, inputs):
|
|
|
|
""" 接受预处理过后的数据进行预测
|
|
|
|
Args:
|
|
|
|
inputs(dict): 预处理过后的数据
|
|
|
|
"""
|
|
|
|
input_names = self.predictor.get_input_names()
|
|
|
|
for name in input_names:
|
|
|
|
input_tensor = self.predictor.get_input_handle(name)
|
|
|
|
input_tensor.copy_from_cpu(inputs[name])
|
|
|
|
|
|
|
|
self.predictor.run()
|
|
|
|
output_names = self.predictor.get_output_names()
|
|
|
|
net_outputs = list()
|
|
|
|
for name in output_names:
|
|
|
|
output_tensor = self.predictor.get_output_handle(name)
|
|
|
|
net_outputs.append(output_tensor.copy_to_cpu())
|
|
|
|
|
|
|
|
return net_outputs
|
|
|
|
|
|
|
|
def _run(self, images, topk=1, transforms=None):
|
|
|
|
self.timer.preprocess_time_s.start()
|
|
|
|
preprocessed_input = self.preprocess(images, transforms)
|
|
|
|
self.timer.preprocess_time_s.end(iter_num=len(images))
|
|
|
|
|
|
|
|
self.timer.inference_time_s.start()
|
|
|
|
net_outputs = self.raw_predict(preprocessed_input)
|
|
|
|
self.timer.inference_time_s.end(iter_num=1)
|
|
|
|
|
|
|
|
self.timer.postprocess_time_s.start()
|
|
|
|
results = self.postprocess(
|
|
|
|
net_outputs,
|
|
|
|
topk,
|
|
|
|
ori_shape=preprocessed_input.get('ori_shape', None),
|
|
|
|
transforms=transforms)
|
|
|
|
self.timer.postprocess_time_s.end(iter_num=len(images))
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
def predict(self,
|
|
|
|
img_file,
|
|
|
|
topk=1,
|
|
|
|
transforms=None,
|
|
|
|
warmup_iters=0,
|
|
|
|
repeats=1):
|
|
|
|
""" 图片预测
|
|
|
|
Args:
|
|
|
|
img_file(List[str or tuple or np.ndarray], str, tuple, or np.ndarray):
|
|
|
|
对于场景分类、图像复原、目标检测和语义分割任务来说,该参数可为单一图像路径,或是解码后的、排列格式为(H, W, C)
|
|
|
|
且具有float32类型的BGR图像(表示为numpy的ndarray形式),或者是一组图像路径或np.ndarray对象构成的列表;对于变化检测
|
|
|
|
任务来说,该参数可以为图像路径二元组(分别表示前后两个时相影像路径),或是两幅图像组成的二元组,或者是上述两种二元组
|
|
|
|
之一构成的列表。
|
|
|
|
topk(int): 场景分类模型预测时使用,表示预测前topk的结果。默认值为1。
|
|
|
|
transforms (paddlers.transforms): 数据预处理操作。默认值为None, 即使用`model.yml`中保存的数据预处理操作。
|
|
|
|
warmup_iters (int): 预热轮数,用于评估模型推理以及前后处理速度。若大于1,会预先重复预测warmup_iters,而后才开始正式的预测及其速度评估。默认为0。
|
|
|
|
repeats (int): 重复次数,用于评估模型推理以及前后处理速度。若大于1,会预测repeats次取时间平均值。默认值为1。
|
|
|
|
"""
|
|
|
|
if repeats < 1:
|
|
|
|
logging.error("`repeats` must be greater than 1.", exit=True)
|
|
|
|
if transforms is None and not hasattr(self._model, 'test_transforms'):
|
|
|
|
raise Exception("Transforms need to be defined, now is None.")
|
|
|
|
if transforms is None:
|
|
|
|
transforms = self._model.test_transforms
|
|
|
|
if isinstance(img_file, tuple) and len(img_file) != 2:
|
|
|
|
raise ValueError(
|
|
|
|
f"A change detection model accepts exactly two input images, but there are {len(img_file)}."
|
|
|
|
)
|
|
|
|
if isinstance(img_file, (str, np.ndarray, tuple)):
|
|
|
|
images = [img_file]
|
|
|
|
else:
|
|
|
|
images = img_file
|
|
|
|
|
|
|
|
for _ in range(warmup_iters):
|
|
|
|
self._run(images=images, topk=topk, transforms=transforms)
|
|
|
|
self.timer.reset()
|
|
|
|
|
|
|
|
for _ in range(repeats):
|
|
|
|
results = self._run(images=images, topk=topk, transforms=transforms)
|
|
|
|
|
|
|
|
self.timer.repeats = repeats
|
|
|
|
self.timer.img_num = len(images)
|
|
|
|
self.timer.info(average=True)
|
|
|
|
|
|
|
|
if isinstance(img_file, (str, np.ndarray)):
|
|
|
|
results = results[0]
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
def batch_predict(self, image_list, **params):
|
|
|
|
return self.predict(img_file=image_list, **params)
|