|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
# Refer to https://github.com/likyoo/Siam-NestedUNet .
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
|
|
from .layers import Conv1x1, MaxPool2x2, make_norm, ChannelAttention
|
|
|
|
from .param_init import KaimingInitMixin
|
|
|
|
|
|
|
|
|
|
|
|
class SNUNet(nn.Layer, KaimingInitMixin):
|
|
|
|
"""
|
|
|
|
The SNUNet implementation based on PaddlePaddle.
|
|
|
|
|
|
|
|
The original article refers to
|
|
|
|
S. Fang, et al., "SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images"
|
|
|
|
(https://ieeexplore.ieee.org/document/9355573).
|
|
|
|
|
|
|
|
Note that bilinear interpolation is adopted as the upsampling method, which is different from the paper.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_channels (int): The number of bands of the input images.
|
|
|
|
num_classes (int): The number of target classes.
|
|
|
|
width (int, optional): The output channels of the first convolutional layer. Default: 32.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_channels, num_classes, width=32):
|
|
|
|
super(SNUNet, self).__init__()
|
|
|
|
|
|
|
|
filters = (width, width * 2, width * 4, width * 8, width * 16)
|
|
|
|
|
|
|
|
self.conv0_0 = ConvBlockNested(in_channels, filters[0], filters[0])
|
|
|
|
self.conv1_0 = ConvBlockNested(filters[0], filters[1], filters[1])
|
|
|
|
self.conv2_0 = ConvBlockNested(filters[1], filters[2], filters[2])
|
|
|
|
self.conv3_0 = ConvBlockNested(filters[2], filters[3], filters[3])
|
|
|
|
self.conv4_0 = ConvBlockNested(filters[3], filters[4], filters[4])
|
|
|
|
self.down1 = MaxPool2x2()
|
|
|
|
self.down2 = MaxPool2x2()
|
|
|
|
self.down3 = MaxPool2x2()
|
|
|
|
self.down4 = MaxPool2x2()
|
|
|
|
self.up1_0 = Up(filters[1])
|
|
|
|
self.up2_0 = Up(filters[2])
|
|
|
|
self.up3_0 = Up(filters[3])
|
|
|
|
self.up4_0 = Up(filters[4])
|
|
|
|
|
|
|
|
self.conv0_1 = ConvBlockNested(filters[0] * 2 + filters[1], filters[0],
|
|
|
|
filters[0])
|
|
|
|
self.conv1_1 = ConvBlockNested(filters[1] * 2 + filters[2], filters[1],
|
|
|
|
filters[1])
|
|
|
|
self.conv2_1 = ConvBlockNested(filters[2] * 2 + filters[3], filters[2],
|
|
|
|
filters[2])
|
|
|
|
self.conv3_1 = ConvBlockNested(filters[3] * 2 + filters[4], filters[3],
|
|
|
|
filters[3])
|
|
|
|
self.up1_1 = Up(filters[1])
|
|
|
|
self.up2_1 = Up(filters[2])
|
|
|
|
self.up3_1 = Up(filters[3])
|
|
|
|
|
|
|
|
self.conv0_2 = ConvBlockNested(filters[0] * 3 + filters[1], filters[0],
|
|
|
|
filters[0])
|
|
|
|
self.conv1_2 = ConvBlockNested(filters[1] * 3 + filters[2], filters[1],
|
|
|
|
filters[1])
|
|
|
|
self.conv2_2 = ConvBlockNested(filters[2] * 3 + filters[3], filters[2],
|
|
|
|
filters[2])
|
|
|
|
self.up1_2 = Up(filters[1])
|
|
|
|
self.up2_2 = Up(filters[2])
|
|
|
|
|
|
|
|
self.conv0_3 = ConvBlockNested(filters[0] * 4 + filters[1], filters[0],
|
|
|
|
filters[0])
|
|
|
|
self.conv1_3 = ConvBlockNested(filters[1] * 4 + filters[2], filters[1],
|
|
|
|
filters[1])
|
|
|
|
self.up1_3 = Up(filters[1])
|
|
|
|
|
|
|
|
self.conv0_4 = ConvBlockNested(filters[0] * 5 + filters[1], filters[0],
|
|
|
|
filters[0])
|
|
|
|
|
|
|
|
self.ca_intra = ChannelAttention(filters[0], ratio=4)
|
|
|
|
self.ca_inter = ChannelAttention(filters[0] * 4, ratio=16)
|
|
|
|
|
|
|
|
self.conv_out = Conv1x1(filters[0] * 4, num_classes)
|
|
|
|
|
|
|
|
self.init_weight()
|
|
|
|
|
|
|
|
def forward(self, t1, t2):
|
|
|
|
x0_0_t1 = self.conv0_0(t1)
|
|
|
|
x1_0_t1 = self.conv1_0(self.down1(x0_0_t1))
|
|
|
|
x2_0_t1 = self.conv2_0(self.down2(x1_0_t1))
|
|
|
|
x3_0_t1 = self.conv3_0(self.down3(x2_0_t1))
|
|
|
|
|
|
|
|
x0_0_t2 = self.conv0_0(t2)
|
|
|
|
x1_0_t2 = self.conv1_0(self.down1(x0_0_t2))
|
|
|
|
x2_0_t2 = self.conv2_0(self.down2(x1_0_t2))
|
|
|
|
x3_0_t2 = self.conv3_0(self.down3(x2_0_t2))
|
|
|
|
x4_0_t2 = self.conv4_0(self.down4(x3_0_t2))
|
|
|
|
|
|
|
|
x0_1 = self.conv0_1(
|
|
|
|
paddle.concat([x0_0_t1, x0_0_t2, self.up1_0(x1_0_t2)], 1))
|
|
|
|
x1_1 = self.conv1_1(
|
|
|
|
paddle.concat([x1_0_t1, x1_0_t2, self.up2_0(x2_0_t2)], 1))
|
|
|
|
x0_2 = self.conv0_2(
|
|
|
|
paddle.concat([x0_0_t1, x0_0_t2, x0_1, self.up1_1(x1_1)], 1))
|
|
|
|
|
|
|
|
x2_1 = self.conv2_1(
|
|
|
|
paddle.concat([x2_0_t1, x2_0_t2, self.up3_0(x3_0_t2)], 1))
|
|
|
|
x1_2 = self.conv1_2(
|
|
|
|
paddle.concat([x1_0_t1, x1_0_t2, x1_1, self.up2_1(x2_1)], 1))
|
|
|
|
x0_3 = self.conv0_3(
|
|
|
|
paddle.concat([x0_0_t1, x0_0_t2, x0_1, x0_2, self.up1_2(x1_2)], 1))
|
|
|
|
|
|
|
|
x3_1 = self.conv3_1(
|
|
|
|
paddle.concat([x3_0_t1, x3_0_t2, self.up4_0(x4_0_t2)], 1))
|
|
|
|
x2_2 = self.conv2_2(
|
|
|
|
paddle.concat([x2_0_t1, x2_0_t2, x2_1, self.up3_1(x3_1)], 1))
|
|
|
|
x1_3 = self.conv1_3(
|
|
|
|
paddle.concat([x1_0_t1, x1_0_t2, x1_1, x1_2, self.up2_2(x2_2)], 1))
|
|
|
|
x0_4 = self.conv0_4(
|
|
|
|
paddle.concat(
|
|
|
|
[x0_0_t1, x0_0_t2, x0_1, x0_2, x0_3, self.up1_3(x1_3)], 1))
|
|
|
|
|
|
|
|
out = paddle.concat([x0_1, x0_2, x0_3, x0_4], 1)
|
|
|
|
|
|
|
|
intra = paddle.sum(paddle.stack([x0_1, x0_2, x0_3, x0_4]), axis=0)
|
|
|
|
m_intra = self.ca_intra(intra)
|
|
|
|
out = self.ca_inter(out) * (out + paddle.tile(m_intra, (1, 4, 1, 1)))
|
|
|
|
|
|
|
|
pred = self.conv_out(out)
|
|
|
|
return [pred]
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBlockNested(nn.Layer):
|
|
|
|
def __init__(self, in_ch, out_ch, mid_ch):
|
|
|
|
super(ConvBlockNested, self).__init__()
|
|
|
|
self.act = nn.ReLU()
|
|
|
|
self.conv1 = nn.Conv2D(in_ch, mid_ch, kernel_size=3, padding=1)
|
|
|
|
self.bn1 = make_norm(mid_ch)
|
|
|
|
self.conv2 = nn.Conv2D(mid_ch, out_ch, kernel_size=3, padding=1)
|
|
|
|
self.bn2 = make_norm(out_ch)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv1(x)
|
|
|
|
identity = x
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.act(x)
|
|
|
|
|
|
|
|
x = self.conv2(x)
|
|
|
|
x = self.bn2(x)
|
|
|
|
output = self.act(x + identity)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class Up(nn.Layer):
|
|
|
|
def __init__(self, in_ch, use_conv=False):
|
|
|
|
super(Up, self).__init__()
|
|
|
|
if use_conv:
|
|
|
|
self.up = nn.Conv2DTranspose(in_ch, in_ch, 2, stride=2)
|
|
|
|
else:
|
|
|
|
self.up = nn.Upsample(
|
|
|
|
scale_factor=2, mode='bilinear', align_corners=True)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.up(x)
|
|
|
|
return x
|