You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
352 lines
16 KiB
352 lines
16 KiB
2 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import tempfile
|
||
|
import unittest.mock as mock
|
||
|
|
||
|
import cv2
|
||
|
import paddle
|
||
|
|
||
|
import paddlers as pdrs
|
||
|
from testing_utils import CommonTest, run_script
|
||
|
|
||
|
|
||
|
class TestPredictor(CommonTest):
|
||
|
MODULE = pdrs.tasks
|
||
|
TRAINER_NAME_TO_EXPORT_OPTS = {}
|
||
|
|
||
|
@staticmethod
|
||
|
def add_tests(cls):
|
||
|
def _test_predictor(trainer_name):
|
||
|
def _test_predictor_impl(self):
|
||
|
trainer_class = getattr(self.MODULE, trainer_name)
|
||
|
# Construct trainer with default parameters
|
||
|
trainer = trainer_class()
|
||
|
with tempfile.TemporaryDirectory() as td:
|
||
|
dynamic_model_dir = f"{td}/dynamic"
|
||
|
static_model_dir = f"{td}/static"
|
||
|
# HACK: BaseModel.save_model() requires BaseModel().optimizer to be set
|
||
|
optimizer = mock.Mock()
|
||
|
optimizer.state_dict.return_value = {'foo': 'bar'}
|
||
|
trainer.optimizer = optimizer
|
||
|
trainer.save_model(dynamic_model_dir)
|
||
|
export_cmd = f"python export_model.py --model_dir {dynamic_model_dir} --save_dir {static_model_dir} "
|
||
|
if trainer_name in self.TRAINER_NAME_TO_EXPORT_OPTS:
|
||
|
export_cmd += self.TRAINER_NAME_TO_EXPORT_OPTS[
|
||
|
trainer_name]
|
||
|
elif '_default' in self.TRAINER_NAME_TO_EXPORT_OPTS:
|
||
|
export_cmd += self.TRAINER_NAME_TO_EXPORT_OPTS[
|
||
|
'_default']
|
||
|
run_script(export_cmd, wd="../deploy/export")
|
||
|
# Construct predictor
|
||
|
# TODO: Test trt and mkl
|
||
|
predictor = pdrs.deploy.Predictor(
|
||
|
static_model_dir,
|
||
|
use_gpu=paddle.device.get_device().startswith('gpu'))
|
||
|
self.check_predictor(predictor, trainer)
|
||
|
|
||
|
return _test_predictor_impl
|
||
|
|
||
|
for trainer_name in cls.MODULE.__all__:
|
||
|
setattr(cls, 'test_' + trainer_name, _test_predictor(trainer_name))
|
||
|
|
||
|
return cls
|
||
|
|
||
|
def check_predictor(self, predictor, trainer):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def check_dict_equal(self, dict_, expected_dict):
|
||
|
if isinstance(dict_, list):
|
||
|
self.assertIsInstance(expected_dict, list)
|
||
|
self.assertEqual(len(dict_), len(expected_dict))
|
||
|
for d1, d2 in zip(dict_, expected_dict):
|
||
|
self.check_dict_equal(d1, d2)
|
||
|
else:
|
||
|
assert isinstance(dict_, dict)
|
||
|
assert isinstance(expected_dict, dict)
|
||
|
self.assertEqual(dict_.keys(), expected_dict.keys())
|
||
|
for key in dict_.keys():
|
||
|
self.check_output_equal(dict_[key], expected_dict[key])
|
||
|
|
||
|
|
||
|
@TestPredictor.add_tests
|
||
|
class TestCDPredictor(TestPredictor):
|
||
|
MODULE = pdrs.tasks.change_detector
|
||
|
TRAINER_NAME_TO_EXPORT_OPTS = {
|
||
|
'BIT': "--fixed_input_shape [1,3,256,256]",
|
||
|
'_default': "--fixed_input_shape [-1,3,256,256]"
|
||
|
}
|
||
|
|
||
|
def check_predictor(self, predictor, trainer):
|
||
|
t1_path = "data/ssmt/optical_t1.bmp"
|
||
|
t2_path = "data/ssmt/optical_t2.bmp"
|
||
|
single_input = (t1_path, t2_path)
|
||
|
num_inputs = 2
|
||
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
||
|
|
||
|
# Expected failure
|
||
|
with self.assertRaises(ValueError):
|
||
|
predictor.predict(t1_path, transforms=transforms)
|
||
|
|
||
|
# Single input (file paths)
|
||
|
input_ = single_input
|
||
|
out_single_file_p = predictor.predict(input_, transforms=transforms)
|
||
|
out_single_file_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_file_p, out_single_file_t)
|
||
|
out_single_file_list_p = predictor.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.assertEqual(len(out_single_file_list_p), 1)
|
||
|
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
|
||
|
out_single_file_list_t = trainer.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.check_dict_equal(out_single_file_list_p[0],
|
||
|
out_single_file_list_t[0])
|
||
|
|
||
|
# Single input (ndarrays)
|
||
|
input_ = (cv2.imread(t1_path).astype('float32'),
|
||
|
cv2.imread(t2_path).astype('float32')
|
||
|
) # Reuse the name `input_`
|
||
|
out_single_array_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_file_p)
|
||
|
out_single_array_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_array_t)
|
||
|
out_single_array_list_p = predictor.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.assertEqual(len(out_single_array_list_p), 1)
|
||
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
||
|
out_single_array_list_t = trainer.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_list_p[0],
|
||
|
out_single_array_list_t[0])
|
||
|
|
||
|
if isinstance(trainer, pdrs.tasks.change_detector.BIT):
|
||
|
return
|
||
|
|
||
|
# Multiple inputs (file paths)
|
||
|
input_ = [single_input] * num_inputs # Reuse the name `input_`
|
||
|
out_multi_file_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_file_p), num_inputs)
|
||
|
out_multi_file_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_multi_file_p, out_multi_file_t)
|
||
|
|
||
|
# Multiple inputs (ndarrays)
|
||
|
input_ = [(cv2.imread(t1_path).astype('float32'), cv2.imread(t2_path)
|
||
|
.astype('float32'))] * num_inputs # Reuse the name `input_`
|
||
|
out_multi_array_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_array_p), num_inputs)
|
||
|
out_multi_array_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_multi_array_p, out_multi_array_t)
|
||
|
|
||
|
|
||
|
@TestPredictor.add_tests
|
||
|
class TestClasPredictor(TestPredictor):
|
||
|
MODULE = pdrs.tasks.classifier
|
||
|
TRAINER_NAME_TO_EXPORT_OPTS = {
|
||
|
'_default': "--fixed_input_shape [-1,3,256,256]"
|
||
|
}
|
||
|
|
||
|
def check_predictor(self, predictor, trainer):
|
||
|
single_input = "data/ssmt/optical_t1.bmp"
|
||
|
num_inputs = 2
|
||
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
||
|
labels = list(range(2))
|
||
|
trainer.labels = labels
|
||
|
predictor._model.labels = labels
|
||
|
|
||
|
# Single input (file paths)
|
||
|
input_ = single_input
|
||
|
out_single_file_p = predictor.predict(input_, transforms=transforms)
|
||
|
out_single_file_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_file_p, out_single_file_t)
|
||
|
out_single_file_list_p = predictor.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.assertEqual(len(out_single_file_list_p), 1)
|
||
|
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
|
||
|
out_single_file_list_t = trainer.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.check_dict_equal(out_single_file_list_p[0],
|
||
|
out_single_file_list_t[0])
|
||
|
|
||
|
# Single input (ndarrays)
|
||
|
input_ = cv2.imread(single_input).astype(
|
||
|
'float32') # Reuse the name `input_`
|
||
|
out_single_array_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_file_p)
|
||
|
out_single_array_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_array_t)
|
||
|
out_single_array_list_p = predictor.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.assertEqual(len(out_single_array_list_p), 1)
|
||
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
||
|
out_single_array_list_t = trainer.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_list_p[0],
|
||
|
out_single_array_list_t[0])
|
||
|
|
||
|
# Multiple inputs (file paths)
|
||
|
input_ = [single_input] * num_inputs # Reuse the name `input_`
|
||
|
out_multi_file_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_file_p), num_inputs)
|
||
|
out_multi_file_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_file_p), len(out_multi_file_t))
|
||
|
self.check_dict_equal(out_multi_file_p, out_multi_file_t)
|
||
|
|
||
|
# Multiple inputs (ndarrays)
|
||
|
input_ = [cv2.imread(single_input).astype('float32')
|
||
|
] * num_inputs # Reuse the name `input_`
|
||
|
out_multi_array_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_array_p), num_inputs)
|
||
|
out_multi_array_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_array_p), len(out_multi_array_t))
|
||
|
self.check_dict_equal(out_multi_array_p, out_multi_array_t)
|
||
|
|
||
|
|
||
|
@TestPredictor.add_tests
|
||
|
class TestDetPredictor(TestPredictor):
|
||
|
MODULE = pdrs.tasks.object_detector
|
||
|
TRAINER_NAME_TO_EXPORT_OPTS = {
|
||
|
'_default': "--fixed_input_shape [-1,3,256,256]"
|
||
|
}
|
||
|
|
||
|
def check_predictor(self, predictor, trainer):
|
||
|
single_input = "data/ssmt/optical_t1.bmp"
|
||
|
num_inputs = 2
|
||
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
||
|
labels = list(range(80))
|
||
|
trainer.labels = labels
|
||
|
predictor._model.labels = labels
|
||
|
|
||
|
# Single input (file paths)
|
||
|
input_ = single_input
|
||
|
out_single_file_p = predictor.predict(input_, transforms=transforms)
|
||
|
out_single_file_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_file_p, out_single_file_t)
|
||
|
out_single_file_list_p = predictor.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.assertEqual(len(out_single_file_list_p), 1)
|
||
|
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
|
||
|
out_single_file_list_t = trainer.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.check_dict_equal(out_single_file_list_p[0],
|
||
|
out_single_file_list_t[0])
|
||
|
|
||
|
# Single input (ndarrays)
|
||
|
input_ = cv2.imread(single_input).astype(
|
||
|
'float32') # Reuse the name `input_`
|
||
|
out_single_array_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_file_p)
|
||
|
out_single_array_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_array_t)
|
||
|
out_single_array_list_p = predictor.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.assertEqual(len(out_single_array_list_p), 1)
|
||
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
||
|
out_single_array_list_t = trainer.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_list_p[0],
|
||
|
out_single_array_list_t[0])
|
||
|
|
||
|
# Single input (ndarrays)
|
||
|
input_ = cv2.imread(single_input).astype(
|
||
|
'float32') # Reuse the name `input_`
|
||
|
out_single_array_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_file_p)
|
||
|
out_single_array_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_array_t)
|
||
|
out_single_array_list_p = predictor.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.assertEqual(len(out_single_array_list_p), 1)
|
||
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
||
|
out_single_array_list_t = trainer.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_list_p[0],
|
||
|
out_single_array_list_t[0])
|
||
|
|
||
|
# Multiple inputs (file paths)
|
||
|
input_ = [single_input] * num_inputs # Reuse the name `input_`
|
||
|
out_multi_file_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_file_p), num_inputs)
|
||
|
out_multi_file_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_file_p), len(out_multi_file_t))
|
||
|
self.check_dict_equal(out_multi_file_p, out_multi_file_t)
|
||
|
|
||
|
# Multiple inputs (ndarrays)
|
||
|
input_ = [cv2.imread(single_input).astype('float32')
|
||
|
] * num_inputs # Reuse the name `input_`
|
||
|
out_multi_array_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_array_p), num_inputs)
|
||
|
out_multi_array_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_array_p), len(out_multi_array_t))
|
||
|
self.check_dict_equal(out_multi_array_p, out_multi_array_t)
|
||
|
|
||
|
|
||
|
@TestPredictor.add_tests
|
||
|
class TestSegPredictor(TestPredictor):
|
||
|
MODULE = pdrs.tasks.segmenter
|
||
|
TRAINER_NAME_TO_EXPORT_OPTS = {
|
||
|
'_default': "--fixed_input_shape [-1,3,256,256]"
|
||
|
}
|
||
|
|
||
|
def check_predictor(self, predictor, trainer):
|
||
|
single_input = "data/ssmt/optical_t1.bmp"
|
||
|
num_inputs = 2
|
||
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
||
|
|
||
|
# Single input (file paths)
|
||
|
input_ = single_input
|
||
|
out_single_file_p = predictor.predict(input_, transforms=transforms)
|
||
|
out_single_file_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_file_p, out_single_file_t)
|
||
|
out_single_file_list_p = predictor.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.assertEqual(len(out_single_file_list_p), 1)
|
||
|
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
|
||
|
out_single_file_list_t = trainer.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.check_dict_equal(out_single_file_list_p[0],
|
||
|
out_single_file_list_t[0])
|
||
|
|
||
|
# Single input (ndarrays)
|
||
|
input_ = cv2.imread(single_input).astype(
|
||
|
'float32') # Reuse the name `input_`
|
||
|
out_single_array_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_file_p)
|
||
|
out_single_array_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_p, out_single_array_t)
|
||
|
out_single_array_list_p = predictor.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.assertEqual(len(out_single_array_list_p), 1)
|
||
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
||
|
out_single_array_list_t = trainer.predict(
|
||
|
[input_], transforms=transforms)
|
||
|
self.check_dict_equal(out_single_array_list_p[0],
|
||
|
out_single_array_list_t[0])
|
||
|
|
||
|
# Multiple inputs (file paths)
|
||
|
input_ = [single_input] * num_inputs # Reuse the name `input_`
|
||
|
out_multi_file_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_file_p), num_inputs)
|
||
|
out_multi_file_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_file_p), len(out_multi_file_t))
|
||
|
self.check_dict_equal(out_multi_file_p, out_multi_file_t)
|
||
|
|
||
|
# Multiple inputs (ndarrays)
|
||
|
input_ = [cv2.imread(single_input).astype('float32')
|
||
|
] * num_inputs # Reuse the name `input_`
|
||
|
out_multi_array_p = predictor.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_array_p), num_inputs)
|
||
|
out_multi_array_t = trainer.predict(input_, transforms=transforms)
|
||
|
self.assertEqual(len(out_multi_array_p), len(out_multi_array_t))
|
||
|
self.check_dict_equal(out_multi_array_p, out_multi_array_t)
|