You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

234 lines
7.4 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import os.path as osp
import time
import math
import imghdr
import chardet
import json
import numpy as np
from . import logging
import platform
import paddlers
def seconds_to_hms(seconds):
h = math.floor(seconds / 3600)
m = math.floor((seconds - h * 3600) / 60)
s = int(seconds - h * 3600 - m * 60)
hms_str = "{}:{}:{}".format(h, m, s)
return hms_str
def get_encoding(path):
f = open(path, 'rb')
data = f.read()
file_encoding = chardet.detect(data).get('encoding')
f.close()
return file_encoding
def get_single_card_bs(batch_size):
card_num = paddlers.env_info['num']
place = paddlers.env_info['place']
if batch_size % card_num == 0:
return int(batch_size // card_num)
elif batch_size == 1:
# Evaluation of detection task only supports single card with batch size 1
return batch_size
else:
raise Exception("Please support correct batch_size, \
which can be divided by available cards({}) in {}"
.format(card_num, place))
def dict2str(dict_input):
out = ''
for k, v in dict_input.items():
try:
v = '{:8.6f}'.format(float(v))
except:
pass
out = out + '{}={}, '.format(k, v)
return out.strip(', ')
def path_normalization(path):
win_sep = "\\"
other_sep = "/"
if platform.system() == "Windows":
path = win_sep.join(path.split(other_sep))
else:
path = other_sep.join(path.split(win_sep))
return path
def is_pic(img_path):
valid_suffix = ['JPEG', 'jpeg', 'JPG', 'jpg', 'BMP', 'bmp', 'PNG', 'png', '.npy']
suffix = img_path.split('.')[-1]
if suffix in valid_suffix:
return True
img_format = imghdr.what(img_path)
_, ext = osp.splitext(img_path)
if img_format == 'tiff' or ext == '.img':
return True
return False
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(MyEncoder, self).default(obj)
class EarlyStop:
def __init__(self, patience, thresh):
self.patience = patience
self.counter = 0
self.score = None
self.max = 0
self.thresh = thresh
if patience < 1:
raise Exception("Argument patience should be a positive integer.")
def __call__(self, current_score):
if self.score is None:
self.score = current_score
return False
elif current_score > self.max:
self.counter = 0
self.score = current_score
self.max = current_score
return False
else:
if (abs(self.score - current_score) < self.thresh or
current_score < self.score):
self.counter += 1
self.score = current_score
logging.debug("EarlyStopping: %i / %i" %
(self.counter, self.patience))
if self.counter >= self.patience:
logging.info("EarlyStopping: Stop training")
return True
return False
else:
self.counter = 0
self.score = current_score
return False
class DisablePrint(object):
def __enter__(self):
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
class Times(object):
def __init__(self):
self.time = 0.
# start time
self.st = 0.
# end time
self.et = 0.
def start(self):
self.st = time.time()
def end(self, iter_num=1, accumulative=True):
self.et = time.time()
if accumulative:
self.time += (self.et - self.st) / iter_num
else:
self.time = (self.et - self.st) / iter_num
def reset(self):
self.time = 0.
self.st = 0.
self.et = 0.
def value(self):
return round(self.time, 4)
class Timer(Times):
def __init__(self):
super(Timer, self).__init__()
self.preprocess_time_s = Times()
self.inference_time_s = Times()
self.postprocess_time_s = Times()
self.img_num = 0
self.repeats = 0
def info(self, average=False):
total_time = self.preprocess_time_s.value(
) * self.img_num + self.inference_time_s.value(
) + self.postprocess_time_s.value() * self.img_num
total_time = round(total_time, 4)
print("------------------ Inference Time Info ----------------------")
print("total_time(ms): {}, img_num: {}, batch_size: {}".format(
total_time * 1000, self.img_num, self.img_num))
preprocess_time = round(
self.preprocess_time_s.value() / self.repeats,
4) if average else self.preprocess_time_s.value()
postprocess_time = round(
self.postprocess_time_s.value() / self.repeats,
4) if average else self.postprocess_time_s.value()
inference_time = round(self.inference_time_s.value() / self.repeats,
4) if average else self.inference_time_s.value()
average_latency = total_time / self.repeats
print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
average_latency * 1000, 1 / average_latency))
print("preprocess_time_per_im(ms): {:.2f}, "
"inference_time_per_batch(ms): {:.2f}, "
"postprocess_time_per_im(ms): {:.2f}".format(
preprocess_time * 1000, inference_time * 1000,
postprocess_time * 1000))
def report(self, average=False):
dic = {}
dic['preprocess_time_s'] = round(
self.preprocess_time_s.value() / self.repeats,
4) if average else self.preprocess_time_s.value()
dic['postprocess_time_s'] = round(
self.postprocess_time_s.value() / self.repeats,
4) if average else self.postprocess_time_s.value()
dic['inference_time_s'] = round(
self.inference_time_s.value() / self.repeats,
4) if average else self.inference_time_s.value()
dic['img_num'] = self.img_num
total_time = self.preprocess_time_s.value(
) + self.inference_time_s.value() + self.postprocess_time_s.value()
dic['total_time_s'] = round(total_time, 4)
dic['batch_size'] = self.img_num / self.repeats
return dic
def reset(self):
self.preprocess_time_s.reset()
self.inference_time_s.reset()
self.postprocess_time_s.reset()
self.img_num = 0
self.repeats = 0