You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
6.4 KiB
176 lines
6.4 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import contextlib
|
||
|
import filelock
|
||
|
import os
|
||
|
import tempfile
|
||
|
import numpy as np
|
||
|
import random
|
||
|
from urllib.parse import urlparse, unquote
|
||
|
|
||
|
import paddle
|
||
|
|
||
|
from paddlers.models.ppseg.utils import logger, seg_env
|
||
|
from paddlers.models.ppseg.utils.download import download_file_and_uncompress
|
||
|
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def generate_tempdir(directory: str = None, **kwargs):
|
||
|
'''Generate a temporary directory'''
|
||
|
directory = seg_env.TMP_HOME if not directory else directory
|
||
|
with tempfile.TemporaryDirectory(dir=directory, **kwargs) as _dir:
|
||
|
yield _dir
|
||
|
|
||
|
|
||
|
def load_entire_model(model, pretrained):
|
||
|
if pretrained is not None:
|
||
|
load_pretrained_model(model, pretrained)
|
||
|
else:
|
||
|
logger.warning('Not all pretrained params of {} are loaded, ' \
|
||
|
'training from scratch or a pretrained backbone.'.format(model.__class__.__name__))
|
||
|
|
||
|
|
||
|
def download_pretrained_model(pretrained_model):
|
||
|
"""
|
||
|
Download pretrained model from url.
|
||
|
Args:
|
||
|
pretrained_model (str): the url of pretrained weight
|
||
|
Returns:
|
||
|
str: the path of pretrained weight
|
||
|
"""
|
||
|
assert urlparse(pretrained_model).netloc, "The url is not valid."
|
||
|
|
||
|
pretrained_model = unquote(pretrained_model)
|
||
|
savename = pretrained_model.split('/')[-1]
|
||
|
if not savename.endswith(('tgz', 'tar.gz', 'tar', 'zip')):
|
||
|
savename = pretrained_model.split('/')[-2]
|
||
|
else:
|
||
|
savename = savename.split('.')[0]
|
||
|
|
||
|
with generate_tempdir() as _dir:
|
||
|
with filelock.FileLock(os.path.join(seg_env.TMP_HOME, savename)):
|
||
|
pretrained_model = download_file_and_uncompress(
|
||
|
pretrained_model,
|
||
|
savepath=_dir,
|
||
|
extrapath=seg_env.PRETRAINED_MODEL_HOME,
|
||
|
extraname=savename)
|
||
|
pretrained_model = os.path.join(pretrained_model, 'model.pdparams')
|
||
|
return pretrained_model
|
||
|
|
||
|
|
||
|
def load_pretrained_model(model, pretrained_model):
|
||
|
if pretrained_model is not None:
|
||
|
logger.info('Loading pretrained model from {}'.format(pretrained_model))
|
||
|
|
||
|
if urlparse(pretrained_model).netloc:
|
||
|
pretrained_model = download_pretrained_model(pretrained_model)
|
||
|
|
||
|
if os.path.exists(pretrained_model):
|
||
|
para_state_dict = paddle.load(pretrained_model)
|
||
|
|
||
|
model_state_dict = model.state_dict()
|
||
|
keys = model_state_dict.keys()
|
||
|
num_params_loaded = 0
|
||
|
for k in keys:
|
||
|
if k not in para_state_dict:
|
||
|
logger.warning("{} is not in pretrained model".format(k))
|
||
|
elif list(para_state_dict[k].shape) != list(
|
||
|
model_state_dict[k].shape):
|
||
|
logger.warning(
|
||
|
"[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
|
||
|
.format(k, para_state_dict[k].shape,
|
||
|
model_state_dict[k].shape))
|
||
|
else:
|
||
|
model_state_dict[k] = para_state_dict[k]
|
||
|
num_params_loaded += 1
|
||
|
model.set_dict(model_state_dict)
|
||
|
logger.info("There are {}/{} variables loaded into {}.".format(
|
||
|
num_params_loaded, len(model_state_dict),
|
||
|
model.__class__.__name__))
|
||
|
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'The pretrained model directory is not Found: {}'.format(
|
||
|
pretrained_model))
|
||
|
else:
|
||
|
logger.info(
|
||
|
'No pretrained model to load, {} will be trained from scratch.'.
|
||
|
format(model.__class__.__name__))
|
||
|
|
||
|
|
||
|
def resume(model, optimizer, resume_model):
|
||
|
if resume_model is not None:
|
||
|
logger.info('Resume model from {}'.format(resume_model))
|
||
|
if os.path.exists(resume_model):
|
||
|
resume_model = os.path.normpath(resume_model)
|
||
|
ckpt_path = os.path.join(resume_model, 'model.pdparams')
|
||
|
para_state_dict = paddle.load(ckpt_path)
|
||
|
ckpt_path = os.path.join(resume_model, 'model.pdopt')
|
||
|
opti_state_dict = paddle.load(ckpt_path)
|
||
|
model.set_state_dict(para_state_dict)
|
||
|
optimizer.set_state_dict(opti_state_dict)
|
||
|
|
||
|
iter = resume_model.split('_')[-1]
|
||
|
iter = int(iter)
|
||
|
return iter
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'Directory of the model needed to resume is not Found: {}'.
|
||
|
format(resume_model))
|
||
|
else:
|
||
|
logger.info('No model needed to resume.')
|
||
|
|
||
|
|
||
|
def worker_init_fn(worker_id):
|
||
|
np.random.seed(random.randint(0, 100000))
|
||
|
|
||
|
|
||
|
def get_image_list(image_path):
|
||
|
"""Get image list"""
|
||
|
valid_suffix = [
|
||
|
'.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png'
|
||
|
]
|
||
|
image_list = []
|
||
|
image_dir = None
|
||
|
if os.path.isfile(image_path):
|
||
|
if os.path.splitext(image_path)[-1] in valid_suffix:
|
||
|
image_list.append(image_path)
|
||
|
else:
|
||
|
image_dir = os.path.dirname(image_path)
|
||
|
with open(image_path, 'r') as f:
|
||
|
for line in f:
|
||
|
line = line.strip()
|
||
|
if len(line.split()) > 1:
|
||
|
line = line.split()[0]
|
||
|
image_list.append(os.path.join(image_dir, line))
|
||
|
elif os.path.isdir(image_path):
|
||
|
image_dir = image_path
|
||
|
for root, dirs, files in os.walk(image_path):
|
||
|
for f in files:
|
||
|
if '.ipynb_checkpoints' in root:
|
||
|
continue
|
||
|
if os.path.splitext(f)[-1] in valid_suffix:
|
||
|
image_list.append(os.path.join(root, f))
|
||
|
else:
|
||
|
raise FileNotFoundError(
|
||
|
'`--image_path` is not found. it should be a path of image, or a file list containing image paths, or a directory including images.'
|
||
|
)
|
||
|
|
||
|
if len(image_list) == 0:
|
||
|
raise RuntimeError(
|
||
|
'There are not image file in `--image_path`={}'.format(image_path))
|
||
|
|
||
|
return image_list, image_dir
|