You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
5.2 KiB
136 lines
5.2 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os
|
||
|
import copy
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
from paddlers.models.ppseg.cvlibs import manager
|
||
|
from paddlers.models.ppseg.transforms import Compose
|
||
|
from paddlers.models.ppseg.datasets import Dataset
|
||
|
from paddlers.models.ppseg.utils.download import download_file_and_uncompress
|
||
|
from paddlers.models.ppseg.utils import seg_env
|
||
|
import paddlers.models.ppseg.transforms.functional as F
|
||
|
|
||
|
URL = "https://paddleseg.bj.bcebos.com/dataset/Supervisely_face.zip"
|
||
|
|
||
|
|
||
|
@manager.DATASETS.add_component
|
||
|
class SUPERVISELY(Dataset):
|
||
|
"""
|
||
|
Supervise.ly dataset `https://supervise.ly/`.
|
||
|
|
||
|
Args:
|
||
|
common_transforms (list): A list of common image transformations for two inputs of portrait net.
|
||
|
transforms1 (list): A list of image transformations for the first input of portrait net.
|
||
|
transforms2 (list): A list of image transformations for the second input of portrait net.
|
||
|
dataset_root (str, optional): The Supervise.ly dataset directory. Default: None.
|
||
|
mode (str, optional): A subset of the entire dataset. It should be one of ('train', 'val'). Default: 'train'.
|
||
|
edge (bool, optional): Whether to compute edge while training. Default: False
|
||
|
"""
|
||
|
NUM_CLASSES = 2
|
||
|
|
||
|
def __init__(self,
|
||
|
common_transforms,
|
||
|
transforms1,
|
||
|
transforms2,
|
||
|
dataset_root=None,
|
||
|
mode='train',
|
||
|
edge=False):
|
||
|
self.dataset_root = dataset_root
|
||
|
self.common_transforms = Compose(common_transforms)
|
||
|
self.transforms = self.common_transforms
|
||
|
if transforms1 is not None:
|
||
|
self.transforms1 = Compose(transforms1, to_rgb=False)
|
||
|
if transforms2 is not None:
|
||
|
self.transforms2 = Compose(transforms2, to_rgb=False)
|
||
|
mode = mode.lower()
|
||
|
self.ignore_index = 255
|
||
|
self.mode = mode
|
||
|
self.num_classes = self.NUM_CLASSES
|
||
|
self.input_width = 224
|
||
|
self.input_height = 224
|
||
|
|
||
|
if self.dataset_root is None:
|
||
|
self.dataset_root = download_file_and_uncompress(
|
||
|
url=URL,
|
||
|
savepath=seg_env.DATA_HOME,
|
||
|
extrapath=seg_env.DATA_HOME)
|
||
|
elif not os.path.exists(self.dataset_root):
|
||
|
self.dataset_root = os.path.normpath(self.dataset_root)
|
||
|
savepath, extraname = self.dataset_root.rsplit(
|
||
|
sep=os.path.sep, maxsplit=1)
|
||
|
self.dataset_root = download_file_and_uncompress(
|
||
|
url=URL,
|
||
|
savepath=savepath,
|
||
|
extrapath=savepath,
|
||
|
extraname=extraname)
|
||
|
|
||
|
if mode == 'train':
|
||
|
path = os.path.join(dataset_root, 'supervisely_face_train_easy.txt')
|
||
|
else:
|
||
|
path = os.path.join(dataset_root, 'supervisely_face_test_easy.txt')
|
||
|
with open(path, 'r') as f:
|
||
|
files = f.readlines()
|
||
|
files = ["/".join(file.split('/')[1:]) for file in files]
|
||
|
img_files = [os.path.join(dataset_root, file).strip() for file in files]
|
||
|
label_files = [
|
||
|
os.path.join(dataset_root, file.replace('/img/', '/ann/')).strip()
|
||
|
for file in files
|
||
|
]
|
||
|
|
||
|
self.file_list = [[
|
||
|
img_path, label_path
|
||
|
] for img_path, label_path in zip(img_files, label_files)]
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
image_path, label_path = self.file_list[item]
|
||
|
im = cv2.imread(image_path)
|
||
|
label = cv2.imread(label_path, 0)
|
||
|
label[label > 0] = 1
|
||
|
|
||
|
if self.mode == "val":
|
||
|
common_im, label = self.common_transforms(im=im, label=label)
|
||
|
im = np.float32(common_im[::-1, :, :]) # RGB => BGR
|
||
|
im_aug = copy.deepcopy(im)
|
||
|
else:
|
||
|
common_im, label = self.common_transforms(im=im, label=label)
|
||
|
common_im = np.transpose(common_im, [1, 2, 0])
|
||
|
# add augmentation
|
||
|
im, _ = self.transforms1(common_im)
|
||
|
im_aug, _ = self.transforms2(common_im)
|
||
|
|
||
|
im = np.float32(im[::-1, :, :]) # RGB => BGR
|
||
|
im_aug = np.float32(im_aug[::-1, :, :]) # RGB => BGR
|
||
|
|
||
|
label = cv2.resize(
|
||
|
np.uint8(label), (self.input_width, self.input_height),
|
||
|
interpolation=cv2.INTER_NEAREST)
|
||
|
|
||
|
# add mask blur
|
||
|
label = np.uint8(cv2.blur(label, (5, 5)))
|
||
|
label[label >= 0.5] = 1
|
||
|
label[label < 0.5] = 0
|
||
|
|
||
|
edge_mask = F.mask_to_binary_edge(
|
||
|
label, radius=4, num_classes=self.num_classes)
|
||
|
edge_mask = np.transpose(edge_mask, [1, 2, 0]).squeeze(axis=-1)
|
||
|
im = np.concatenate([im_aug, im])
|
||
|
if self.mode == "train":
|
||
|
return im, label, edge_mask
|
||
|
else:
|
||
|
return im, label
|