You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.8 KiB
83 lines
2.8 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os
|
||
|
import glob
|
||
|
|
||
|
from paddlers.models.ppseg.datasets import Dataset
|
||
|
from paddlers.models.ppseg.cvlibs import manager
|
||
|
from paddlers.models.ppseg.transforms import Compose
|
||
|
|
||
|
|
||
|
@manager.DATASETS.add_component
|
||
|
class CocoStuff(Dataset):
|
||
|
"""
|
||
|
COCO-Stuff dataset `https://github.com/nightrome/cocostuff`.
|
||
|
The folder structure is as follow:
|
||
|
|
||
|
cocostuff
|
||
|
|
|
||
|
|--images
|
||
|
| |--train2017
|
||
|
| |--val2017
|
||
|
|
|
||
|
|--annotations
|
||
|
| |--train2017
|
||
|
| |--val2017
|
||
|
|
||
|
|
||
|
Args:
|
||
|
transforms (list): Transforms for image.
|
||
|
dataset_root (str): Cityscapes dataset directory.
|
||
|
mode (str): Which part of dataset to use. it is one of ('train', 'val'). Default: 'train'.
|
||
|
edge (bool, optional): Whether to compute edge while training. Default: False
|
||
|
"""
|
||
|
NUM_CLASSES = 171
|
||
|
|
||
|
def __init__(self, transforms, dataset_root, mode='train', edge=False):
|
||
|
self.dataset_root = dataset_root
|
||
|
self.transforms = Compose(transforms)
|
||
|
self.file_list = list()
|
||
|
mode = mode.lower()
|
||
|
self.mode = mode
|
||
|
self.num_classes = self.NUM_CLASSES
|
||
|
self.ignore_index = 255
|
||
|
self.edge = edge
|
||
|
|
||
|
if mode not in ['train', 'val']:
|
||
|
raise ValueError(
|
||
|
"mode should be 'train', 'val', but got {}.".format(mode))
|
||
|
|
||
|
if self.transforms is None:
|
||
|
raise ValueError("`transforms` is necessary, but it is None.")
|
||
|
|
||
|
img_dir = os.path.join(self.dataset_root, 'images')
|
||
|
label_dir = os.path.join(self.dataset_root, 'annotations')
|
||
|
if self.dataset_root is None or not os.path.isdir(
|
||
|
self.dataset_root) or not os.path.isdir(
|
||
|
img_dir) or not os.path.isdir(label_dir):
|
||
|
raise ValueError(
|
||
|
"The dataset is not Found or the folder structure is nonconfoumance."
|
||
|
)
|
||
|
|
||
|
label_files = sorted(
|
||
|
glob.glob(os.path.join(label_dir, mode + '2017', '*.png')))
|
||
|
|
||
|
img_files = sorted(
|
||
|
glob.glob(os.path.join(img_dir, mode + '2017', '*.jpg')))
|
||
|
|
||
|
self.file_list = [[
|
||
|
img_path, label_path
|
||
|
] for img_path, label_path in zip(img_files, label_files)]
|