You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
118 lines
3.6 KiB
118 lines
3.6 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
# code was heavily based on https://github.com/rosinality/stylegan2-pytorch
|
||
|
# MIT License
|
||
|
# Copyright (c) 2019 Kim Seonghyeon
|
||
|
|
||
|
import math
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
|
||
|
from .fused_act import fused_leaky_relu
|
||
|
|
||
|
|
||
|
class EqualConv2D(nn.Layer):
|
||
|
"""This convolutional layer class stabilizes the learning rate changes of its parameters.
|
||
|
Equalizing learning rate keeps the weights in the network at a similar scale during training.
|
||
|
"""
|
||
|
def __init__(self,
|
||
|
in_channel,
|
||
|
out_channel,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
padding=0,
|
||
|
bias=True):
|
||
|
super().__init__()
|
||
|
|
||
|
self.weight = self.create_parameter(
|
||
|
(out_channel, in_channel, kernel_size, kernel_size),
|
||
|
default_initializer=nn.initializer.Normal())
|
||
|
self.scale = 1 / math.sqrt(in_channel * (kernel_size * kernel_size))
|
||
|
|
||
|
self.stride = stride
|
||
|
self.padding = padding
|
||
|
|
||
|
if bias:
|
||
|
self.bias = self.create_parameter((out_channel, ),
|
||
|
nn.initializer.Constant(0.0))
|
||
|
|
||
|
else:
|
||
|
self.bias = None
|
||
|
|
||
|
def forward(self, input):
|
||
|
out = F.conv2d(
|
||
|
input,
|
||
|
self.weight * self.scale,
|
||
|
bias=self.bias,
|
||
|
stride=self.stride,
|
||
|
padding=self.padding,
|
||
|
)
|
||
|
|
||
|
return out
|
||
|
|
||
|
def __repr__(self):
|
||
|
return (
|
||
|
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
|
||
|
f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
|
||
|
)
|
||
|
|
||
|
|
||
|
class EqualLinear(nn.Layer):
|
||
|
"""This linear layer class stabilizes the learning rate changes of its parameters.
|
||
|
Equalizing learning rate keeps the weights in the network at a similar scale during training.
|
||
|
"""
|
||
|
def __init__(self,
|
||
|
in_dim,
|
||
|
out_dim,
|
||
|
bias=True,
|
||
|
bias_init=0,
|
||
|
lr_mul=1,
|
||
|
activation=None):
|
||
|
super().__init__()
|
||
|
|
||
|
self.weight = self.create_parameter(
|
||
|
(in_dim, out_dim), default_initializer=nn.initializer.Normal())
|
||
|
self.weight.set_value((self.weight / lr_mul))
|
||
|
|
||
|
if bias:
|
||
|
self.bias = self.create_parameter(
|
||
|
(out_dim, ), nn.initializer.Constant(bias_init))
|
||
|
|
||
|
else:
|
||
|
self.bias = None
|
||
|
|
||
|
self.activation = activation
|
||
|
|
||
|
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
||
|
self.lr_mul = lr_mul
|
||
|
|
||
|
def forward(self, input):
|
||
|
if self.activation:
|
||
|
out = F.linear(input, self.weight * self.scale)
|
||
|
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
||
|
|
||
|
else:
|
||
|
out = F.linear(input,
|
||
|
self.weight * self.scale,
|
||
|
bias=self.bias * self.lr_mul)
|
||
|
|
||
|
return out
|
||
|
|
||
|
def __repr__(self):
|
||
|
return (
|
||
|
f"{self.__class__.__name__}({self.weight.shape[0]}, {self.weight.shape[1]})"
|
||
|
)
|