You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
402 lines
15 KiB
402 lines
15 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
3 years ago
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os
|
||
|
import json
|
||
|
from collections import defaultdict, OrderedDict
|
||
|
import numpy as np
|
||
|
from pycocotools.coco import COCO
|
||
|
from pycocotools.cocoeval import COCOeval
|
||
|
from ..modeling.keypoint_utils import oks_nms
|
||
|
from scipy.io import loadmat, savemat
|
||
3 years ago
|
from paddlers.models.ppdet.utils.logger import setup_logger
|
||
3 years ago
|
logger = setup_logger(__name__)
|
||
|
|
||
|
__all__ = ['KeyPointTopDownCOCOEval', 'KeyPointTopDownMPIIEval']
|
||
|
|
||
|
|
||
|
class KeyPointTopDownCOCOEval(object):
|
||
|
"""refer to
|
||
|
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
|
||
|
Copyright (c) Microsoft, under the MIT License.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
anno_file,
|
||
|
num_samples,
|
||
|
num_joints,
|
||
|
output_eval,
|
||
|
iou_type='keypoints',
|
||
|
in_vis_thre=0.2,
|
||
|
oks_thre=0.9,
|
||
|
save_prediction_only=False):
|
||
|
super(KeyPointTopDownCOCOEval, self).__init__()
|
||
|
self.coco = COCO(anno_file)
|
||
|
self.num_samples = num_samples
|
||
|
self.num_joints = num_joints
|
||
|
self.iou_type = iou_type
|
||
|
self.in_vis_thre = in_vis_thre
|
||
|
self.oks_thre = oks_thre
|
||
|
self.output_eval = output_eval
|
||
|
self.res_file = os.path.join(output_eval, "keypoints_results.json")
|
||
|
self.save_prediction_only = save_prediction_only
|
||
|
self.reset()
|
||
|
|
||
|
def reset(self):
|
||
|
self.results = {
|
||
|
'all_preds': np.zeros(
|
||
|
(self.num_samples, self.num_joints, 3), dtype=np.float32),
|
||
|
'all_boxes': np.zeros((self.num_samples, 6)),
|
||
|
'image_path': []
|
||
|
}
|
||
|
self.eval_results = {}
|
||
|
self.idx = 0
|
||
|
|
||
|
def update(self, inputs, outputs):
|
||
|
kpts, _ = outputs['keypoint'][0]
|
||
|
|
||
|
num_images = inputs['image'].shape[0]
|
||
|
self.results['all_preds'][self.idx:self.idx + num_images, :, 0:
|
||
|
3] = kpts[:, :, 0:3]
|
||
|
self.results['all_boxes'][self.idx:self.idx + num_images, 0:
|
||
|
2] = inputs['center'].numpy()[:, 0:2]
|
||
|
self.results['all_boxes'][self.idx:self.idx + num_images, 2:
|
||
|
4] = inputs['scale'].numpy()[:, 0:2]
|
||
|
self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod(
|
||
|
inputs['scale'].numpy() * 200, 1)
|
||
|
self.results['all_boxes'][self.idx:self.idx + num_images,
|
||
|
5] = np.squeeze(inputs['score'].numpy())
|
||
|
self.results['image_path'].extend(inputs['im_id'].numpy())
|
||
|
|
||
|
self.idx += num_images
|
||
|
|
||
|
def _write_coco_keypoint_results(self, keypoints):
|
||
|
data_pack = [{
|
||
|
'cat_id': 1,
|
||
|
'cls': 'person',
|
||
|
'ann_type': 'keypoints',
|
||
|
'keypoints': keypoints
|
||
|
}]
|
||
|
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
|
||
|
if not os.path.exists(self.output_eval):
|
||
|
os.makedirs(self.output_eval)
|
||
|
with open(self.res_file, 'w') as f:
|
||
|
json.dump(results, f, sort_keys=True, indent=4)
|
||
|
logger.info(f'The keypoint result is saved to {self.res_file}.')
|
||
|
try:
|
||
|
json.load(open(self.res_file))
|
||
|
except Exception:
|
||
|
content = []
|
||
|
with open(self.res_file, 'r') as f:
|
||
|
for line in f:
|
||
|
content.append(line)
|
||
|
content[-1] = ']'
|
||
|
with open(self.res_file, 'w') as f:
|
||
|
for c in content:
|
||
|
f.write(c)
|
||
|
|
||
|
def _coco_keypoint_results_one_category_kernel(self, data_pack):
|
||
|
cat_id = data_pack['cat_id']
|
||
|
keypoints = data_pack['keypoints']
|
||
|
cat_results = []
|
||
|
|
||
|
for img_kpts in keypoints:
|
||
|
if len(img_kpts) == 0:
|
||
|
continue
|
||
|
|
||
|
_key_points = np.array(
|
||
|
[img_kpts[k]['keypoints'] for k in range(len(img_kpts))])
|
||
|
_key_points = _key_points.reshape(_key_points.shape[0], -1)
|
||
|
|
||
|
result = [{
|
||
|
'image_id': img_kpts[k]['image'],
|
||
|
'category_id': cat_id,
|
||
|
'keypoints': _key_points[k].tolist(),
|
||
|
'score': img_kpts[k]['score'],
|
||
|
'center': list(img_kpts[k]['center']),
|
||
|
'scale': list(img_kpts[k]['scale'])
|
||
|
} for k in range(len(img_kpts))]
|
||
|
cat_results.extend(result)
|
||
|
|
||
|
return cat_results
|
||
|
|
||
|
def get_final_results(self, preds, all_boxes, img_path):
|
||
|
_kpts = []
|
||
|
for idx, kpt in enumerate(preds):
|
||
|
_kpts.append({
|
||
|
'keypoints': kpt,
|
||
|
'center': all_boxes[idx][0:2],
|
||
|
'scale': all_boxes[idx][2:4],
|
||
|
'area': all_boxes[idx][4],
|
||
|
'score': all_boxes[idx][5],
|
||
|
'image': int(img_path[idx])
|
||
|
})
|
||
|
# image x person x (keypoints)
|
||
|
kpts = defaultdict(list)
|
||
|
for kpt in _kpts:
|
||
|
kpts[kpt['image']].append(kpt)
|
||
|
|
||
|
# rescoring and oks nms
|
||
|
num_joints = preds.shape[1]
|
||
|
in_vis_thre = self.in_vis_thre
|
||
|
oks_thre = self.oks_thre
|
||
|
oks_nmsed_kpts = []
|
||
|
for img in kpts.keys():
|
||
|
img_kpts = kpts[img]
|
||
|
for n_p in img_kpts:
|
||
|
box_score = n_p['score']
|
||
|
kpt_score = 0
|
||
|
valid_num = 0
|
||
|
for n_jt in range(0, num_joints):
|
||
|
t_s = n_p['keypoints'][n_jt][2]
|
||
|
if t_s > in_vis_thre:
|
||
|
kpt_score = kpt_score + t_s
|
||
|
valid_num = valid_num + 1
|
||
|
if valid_num != 0:
|
||
|
kpt_score = kpt_score / valid_num
|
||
|
# rescoring
|
||
|
n_p['score'] = kpt_score * box_score
|
||
|
|
||
|
keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))],
|
||
|
oks_thre)
|
||
|
|
||
|
if len(keep) == 0:
|
||
|
oks_nmsed_kpts.append(img_kpts)
|
||
|
else:
|
||
|
oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])
|
||
|
|
||
|
self._write_coco_keypoint_results(oks_nmsed_kpts)
|
||
|
|
||
|
def accumulate(self):
|
||
|
self.get_final_results(self.results['all_preds'],
|
||
|
self.results['all_boxes'],
|
||
|
self.results['image_path'])
|
||
|
if self.save_prediction_only:
|
||
|
logger.info(f'The keypoint result is saved to {self.res_file} '
|
||
|
'and do not evaluate the mAP.')
|
||
|
return
|
||
|
coco_dt = self.coco.loadRes(self.res_file)
|
||
|
coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
|
||
|
coco_eval.params.useSegm = None
|
||
|
coco_eval.evaluate()
|
||
|
coco_eval.accumulate()
|
||
|
coco_eval.summarize()
|
||
|
|
||
|
keypoint_stats = []
|
||
|
for ind in range(len(coco_eval.stats)):
|
||
|
keypoint_stats.append((coco_eval.stats[ind]))
|
||
|
self.eval_results['keypoint'] = keypoint_stats
|
||
|
|
||
|
def log(self):
|
||
|
if self.save_prediction_only:
|
||
|
return
|
||
|
stats_names = [
|
||
|
'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
|
||
|
'AR .75', 'AR (M)', 'AR (L)'
|
||
|
]
|
||
|
num_values = len(stats_names)
|
||
|
print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
|
||
|
print('|---' * (num_values + 1) + '|')
|
||
|
|
||
|
print(' '.join([
|
||
|
'| {:.3f}'.format(value) for value in self.eval_results['keypoint']
|
||
|
]) + ' |')
|
||
|
|
||
|
def get_results(self):
|
||
|
return self.eval_results
|
||
|
|
||
|
|
||
|
class KeyPointTopDownMPIIEval(object):
|
||
|
def __init__(self,
|
||
|
anno_file,
|
||
|
num_samples,
|
||
|
num_joints,
|
||
|
output_eval,
|
||
|
oks_thre=0.9,
|
||
|
save_prediction_only=False):
|
||
|
super(KeyPointTopDownMPIIEval, self).__init__()
|
||
|
self.ann_file = anno_file
|
||
|
self.res_file = os.path.join(output_eval, "keypoints_results.json")
|
||
|
self.save_prediction_only = save_prediction_only
|
||
|
self.reset()
|
||
|
|
||
|
def reset(self):
|
||
|
self.results = []
|
||
|
self.eval_results = {}
|
||
|
self.idx = 0
|
||
|
|
||
|
def update(self, inputs, outputs):
|
||
|
kpts, _ = outputs['keypoint'][0]
|
||
|
|
||
|
num_images = inputs['image'].shape[0]
|
||
|
results = {}
|
||
|
results['preds'] = kpts[:, :, 0:3]
|
||
|
results['boxes'] = np.zeros((num_images, 6))
|
||
|
results['boxes'][:, 0:2] = inputs['center'].numpy()[:, 0:2]
|
||
|
results['boxes'][:, 2:4] = inputs['scale'].numpy()[:, 0:2]
|
||
|
results['boxes'][:, 4] = np.prod(inputs['scale'].numpy() * 200, 1)
|
||
|
results['boxes'][:, 5] = np.squeeze(inputs['score'].numpy())
|
||
|
results['image_path'] = inputs['image_file']
|
||
|
|
||
|
self.results.append(results)
|
||
|
|
||
|
def accumulate(self):
|
||
|
self._mpii_keypoint_results_save()
|
||
|
if self.save_prediction_only:
|
||
|
logger.info(f'The keypoint result is saved to {self.res_file} '
|
||
|
'and do not evaluate the mAP.')
|
||
|
return
|
||
|
|
||
|
self.eval_results = self.evaluate(self.results)
|
||
|
|
||
|
def _mpii_keypoint_results_save(self):
|
||
|
results = []
|
||
|
for res in self.results:
|
||
|
if len(res) == 0:
|
||
|
continue
|
||
|
result = [{
|
||
|
'preds': res['preds'][k].tolist(),
|
||
|
'boxes': res['boxes'][k].tolist(),
|
||
|
'image_path': res['image_path'][k],
|
||
|
} for k in range(len(res))]
|
||
|
results.extend(result)
|
||
|
with open(self.res_file, 'w') as f:
|
||
|
json.dump(results, f, sort_keys=True, indent=4)
|
||
|
logger.info(f'The keypoint result is saved to {self.res_file}.')
|
||
|
|
||
|
def log(self):
|
||
|
if self.save_prediction_only:
|
||
|
return
|
||
|
for item, value in self.eval_results.items():
|
||
|
print("{} : {}".format(item, value))
|
||
|
|
||
|
def get_results(self):
|
||
|
return self.eval_results
|
||
|
|
||
|
def evaluate(self, outputs, savepath=None):
|
||
|
"""Evaluate PCKh for MPII dataset. refer to
|
||
|
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
|
||
|
Copyright (c) Microsoft, under the MIT License.
|
||
|
|
||
|
Args:
|
||
|
outputs(list(preds, boxes)):
|
||
|
|
||
|
* preds (np.ndarray[N,K,3]): The first two dimensions are
|
||
|
coordinates, score is the third dimension of the array.
|
||
|
* boxes (np.ndarray[N,6]): [center[0], center[1], scale[0]
|
||
|
, scale[1],area, score]
|
||
|
|
||
|
Returns:
|
||
|
dict: PCKh for each joint
|
||
|
"""
|
||
|
|
||
|
kpts = []
|
||
|
for output in outputs:
|
||
|
preds = output['preds']
|
||
|
batch_size = preds.shape[0]
|
||
|
for i in range(batch_size):
|
||
|
kpts.append({'keypoints': preds[i]})
|
||
|
|
||
|
preds = np.stack([kpt['keypoints'] for kpt in kpts])
|
||
|
|
||
|
# convert 0-based index to 1-based index,
|
||
|
# and get the first two dimensions.
|
||
|
preds = preds[..., :2] + 1.0
|
||
|
|
||
|
if savepath is not None:
|
||
|
pred_file = os.path.join(savepath, 'pred.mat')
|
||
|
savemat(pred_file, mdict={'preds': preds})
|
||
|
|
||
|
SC_BIAS = 0.6
|
||
|
threshold = 0.5
|
||
|
|
||
|
gt_file = os.path.join(
|
||
|
os.path.dirname(self.ann_file), 'mpii_gt_val.mat')
|
||
|
gt_dict = loadmat(gt_file)
|
||
|
dataset_joints = gt_dict['dataset_joints']
|
||
|
jnt_missing = gt_dict['jnt_missing']
|
||
|
pos_gt_src = gt_dict['pos_gt_src']
|
||
|
headboxes_src = gt_dict['headboxes_src']
|
||
|
|
||
|
pos_pred_src = np.transpose(preds, [1, 2, 0])
|
||
|
|
||
|
head = np.where(dataset_joints == 'head')[1][0]
|
||
|
lsho = np.where(dataset_joints == 'lsho')[1][0]
|
||
|
lelb = np.where(dataset_joints == 'lelb')[1][0]
|
||
|
lwri = np.where(dataset_joints == 'lwri')[1][0]
|
||
|
lhip = np.where(dataset_joints == 'lhip')[1][0]
|
||
|
lkne = np.where(dataset_joints == 'lkne')[1][0]
|
||
|
lank = np.where(dataset_joints == 'lank')[1][0]
|
||
|
|
||
|
rsho = np.where(dataset_joints == 'rsho')[1][0]
|
||
|
relb = np.where(dataset_joints == 'relb')[1][0]
|
||
|
rwri = np.where(dataset_joints == 'rwri')[1][0]
|
||
|
rkne = np.where(dataset_joints == 'rkne')[1][0]
|
||
|
rank = np.where(dataset_joints == 'rank')[1][0]
|
||
|
rhip = np.where(dataset_joints == 'rhip')[1][0]
|
||
|
|
||
|
jnt_visible = 1 - jnt_missing
|
||
|
uv_error = pos_pred_src - pos_gt_src
|
||
|
uv_err = np.linalg.norm(uv_error, axis=1)
|
||
|
headsizes = headboxes_src[1, :, :] - headboxes_src[0, :, :]
|
||
|
headsizes = np.linalg.norm(headsizes, axis=0)
|
||
|
headsizes *= SC_BIAS
|
||
|
scale = headsizes * np.ones((len(uv_err), 1), dtype=np.float32)
|
||
|
scaled_uv_err = uv_err / scale
|
||
|
scaled_uv_err = scaled_uv_err * jnt_visible
|
||
|
jnt_count = np.sum(jnt_visible, axis=1)
|
||
|
less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible
|
||
|
PCKh = 100. * np.sum(less_than_threshold, axis=1) / jnt_count
|
||
|
|
||
|
# save
|
||
|
rng = np.arange(0, 0.5 + 0.01, 0.01)
|
||
|
pckAll = np.zeros((len(rng), 16), dtype=np.float32)
|
||
|
|
||
|
for r, threshold in enumerate(rng):
|
||
|
less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible
|
||
|
pckAll[r, :] = 100. * np.sum(less_than_threshold,
|
||
|
axis=1) / jnt_count
|
||
|
|
||
|
PCKh = np.ma.array(PCKh, mask=False)
|
||
|
PCKh.mask[6:8] = True
|
||
|
|
||
|
jnt_count = np.ma.array(jnt_count, mask=False)
|
||
|
jnt_count.mask[6:8] = True
|
||
|
jnt_ratio = jnt_count / np.sum(jnt_count).astype(np.float64)
|
||
|
|
||
|
name_value = [ #noqa
|
||
|
('Head', PCKh[head]),
|
||
|
('Shoulder', 0.5 * (PCKh[lsho] + PCKh[rsho])),
|
||
|
('Elbow', 0.5 * (PCKh[lelb] + PCKh[relb])),
|
||
|
('Wrist', 0.5 * (PCKh[lwri] + PCKh[rwri])),
|
||
|
('Hip', 0.5 * (PCKh[lhip] + PCKh[rhip])),
|
||
|
('Knee', 0.5 * (PCKh[lkne] + PCKh[rkne])),
|
||
|
('Ankle', 0.5 * (PCKh[lank] + PCKh[rank])),
|
||
|
('PCKh', np.sum(PCKh * jnt_ratio)),
|
||
|
('PCKh@0.1', np.sum(pckAll[11, :] * jnt_ratio))
|
||
|
]
|
||
|
name_value = OrderedDict(name_value)
|
||
|
|
||
|
return name_value
|
||
|
|
||
|
def _sort_and_unique_bboxes(self, kpts, key='bbox_id'):
|
||
|
"""sort kpts and remove the repeated ones."""
|
||
|
kpts = sorted(kpts, key=lambda x: x[key])
|
||
|
num = len(kpts)
|
||
|
for i in range(num - 1, 0, -1):
|
||
|
if kpts[i][key] == kpts[i - 1][key]:
|
||
|
del kpts[i]
|
||
|
|
||
|
return kpts
|