You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

185 lines
7.0 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import itertools
from paddlers.models.ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res, get_keypoint_res
from paddlers.models.ppdet.metrics.map_utils import draw_pr_curve
from paddlers.models.ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
def get_infer_results(outs, catid, bias=0):
"""
Get result at the stage of inference.
The output format is dictionary containing bbox or mask result.
For example, bbox result is a list and each element contains
image_id, category_id, bbox and score.
"""
if outs is None or len(outs) == 0:
raise ValueError(
'The number of valid detection result if zero. Please use reasonable model and check input data.'
)
im_id = outs['im_id']
infer_res = {}
if 'bbox' in outs:
if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6:
infer_res['bbox'] = get_det_poly_res(
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
else:
infer_res['bbox'] = get_det_res(
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
if 'mask' in outs:
# mask post process
infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'],
outs['bbox_num'], im_id, catid)
if 'segm' in outs:
infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid)
if 'keypoint' in outs:
infer_res['keypoint'] = get_keypoint_res(outs, im_id)
outs['bbox_num'] = [len(infer_res['keypoint'])]
return infer_res
def cocoapi_eval(jsonfile,
style,
coco_gt=None,
anno_file=None,
max_dets=(100, 300, 1000),
classwise=False,
sigmas=None,
use_area=True):
"""
Args:
jsonfile (str): Evaluation json file, eg: bbox.json, mask.json.
style (str): COCOeval style, can be `bbox` , `segm` , `proposal`, `keypoints` and `keypoints_crowd`.
coco_gt (str): Whether to load COCOAPI through anno_file,
eg: coco_gt = COCO(anno_file)
anno_file (str): COCO annotations file.
max_dets (tuple): COCO evaluation maxDets.
classwise (bool): Whether per-category AP and draw P-R Curve or not.
sigmas (nparray): keypoint labelling sigmas.
use_area (bool): If gt annotations (eg. CrowdPose, AIC)
do not have 'area', please set use_area=False.
"""
assert coco_gt != None or anno_file != None
if style == 'keypoints_crowd':
#please install xtcocotools==1.6
from xtcocotools.coco import COCO
from xtcocotools.cocoeval import COCOeval
else:
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
if coco_gt == None:
coco_gt = COCO(anno_file)
logger.info("Start evaluate...")
coco_dt = coco_gt.loadRes(jsonfile)
if style == 'proposal':
coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
coco_eval.params.useCats = 0
coco_eval.params.maxDets = list(max_dets)
elif style == 'keypoints_crowd':
coco_eval = COCOeval(coco_gt, coco_dt, style, sigmas, use_area)
else:
coco_eval = COCOeval(coco_gt, coco_dt, style)
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if classwise:
# Compute per-category AP and PR curve
try:
from terminaltables import AsciiTable
except Exception as e:
logger.error(
'terminaltables not found, plaese install terminaltables. '
'for example: `pip install terminaltables`.')
raise e
precisions = coco_eval.eval['precision']
cat_ids = coco_gt.getCatIds()
# precision: (iou, recall, cls, area range, max dets)
assert len(cat_ids) == precisions.shape[2]
results_per_category = []
for idx, catId in enumerate(cat_ids):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
nm = coco_gt.loadCats(catId)[0]
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
if precision.size:
ap = np.mean(precision)
else:
ap = float('nan')
results_per_category.append(
(str(nm["name"]), '{:0.3f}'.format(float(ap))))
pr_array = precisions[0, :, idx, 0, 2]
recall_array = np.arange(0.0, 1.01, 0.01)
draw_pr_curve(
pr_array,
recall_array,
out_dir=style + '_pr_curve',
file_name='{}_precision_recall_curve.jpg'.format(nm["name"]))
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(
*[results_flatten[i::num_columns] for i in range(num_columns)])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('Per-category of {} AP: \n{}'.format(style, table.table))
logger.info("per-category PR curve has output to {} folder.".format(
style + '_pr_curve'))
# flush coco evaluation result
sys.stdout.flush()
return coco_eval.stats
def json_eval_results(metric, json_directory, dataset):
"""
cocoapi eval with already exists proposal.json, bbox.json or mask.json
"""
assert metric == 'COCO'
anno_file = dataset.get_anno()
json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
if json_directory:
assert os.path.exists(
json_directory), "The json directory:{} does not exist".format(
json_directory)
for k, v in enumerate(json_file_list):
json_file_list[k] = os.path.join(str(json_directory), v)
coco_eval_style = ['proposal', 'bbox', 'segm']
for i, v_json in enumerate(json_file_list):
if os.path.exists(v_json):
cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
else:
logger.info("{} not exists!".format(v_json))