You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

345 lines
11 KiB

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"DenseNet121":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams",
"DenseNet161":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams",
"DenseNet169":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams",
"DenseNet201":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams",
"DenseNet264":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams",
}
__all__ = list(MODEL_URLS.keys())
class BNACConvLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
pad=0,
groups=1,
act="relu",
name=None):
super(BNACConvLayer, self).__init__()
self._batch_norm = BatchNorm(
num_channels,
act=act,
param_attr=ParamAttr(name=name + '_bn_scale'),
bias_attr=ParamAttr(name + '_bn_offset'),
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=pad,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
def forward(self, input):
y = self._batch_norm(input)
y = self._conv(y)
return y
class DenseLayer(nn.Layer):
def __init__(self, num_channels, growth_rate, bn_size, dropout, name=None):
super(DenseLayer, self).__init__()
self.dropout = dropout
self.bn_ac_func1 = BNACConvLayer(
num_channels=num_channels,
num_filters=bn_size * growth_rate,
filter_size=1,
pad=0,
stride=1,
name=name + "_x1")
self.bn_ac_func2 = BNACConvLayer(
num_channels=bn_size * growth_rate,
num_filters=growth_rate,
filter_size=3,
pad=1,
stride=1,
name=name + "_x2")
if dropout:
self.dropout_func = Dropout(p=dropout, mode="downscale_in_infer")
def forward(self, input):
conv = self.bn_ac_func1(input)
conv = self.bn_ac_func2(conv)
if self.dropout:
conv = self.dropout_func(conv)
conv = paddle.concat([input, conv], axis=1)
return conv
class DenseBlock(nn.Layer):
def __init__(self,
num_channels,
num_layers,
bn_size,
growth_rate,
dropout,
name=None):
super(DenseBlock, self).__init__()
self.dropout = dropout
self.dense_layer_func = []
pre_channel = num_channels
for layer in range(num_layers):
self.dense_layer_func.append(
self.add_sublayer(
"{}_{}".format(name, layer + 1),
DenseLayer(
num_channels=pre_channel,
growth_rate=growth_rate,
bn_size=bn_size,
dropout=dropout,
name=name + '_' + str(layer + 1))))
pre_channel = pre_channel + growth_rate
def forward(self, input):
conv = input
for func in self.dense_layer_func:
conv = func(conv)
return conv
class TransitionLayer(nn.Layer):
def __init__(self, num_channels, num_output_features, name=None):
super(TransitionLayer, self).__init__()
self.conv_ac_func = BNACConvLayer(
num_channels=num_channels,
num_filters=num_output_features,
filter_size=1,
pad=0,
stride=1,
name=name)
self.pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0)
def forward(self, input):
y = self.conv_ac_func(input)
y = self.pool2d_avg(y)
return y
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
pad=0,
groups=1,
act="relu",
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=pad,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=name + '_bn_scale'),
bias_attr=ParamAttr(name + '_bn_offset'),
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
def forward(self, input):
y = self._conv(input)
y = self._batch_norm(y)
return y
class DenseNet(nn.Layer):
def __init__(self, layers=60, bn_size=4, dropout=0, class_num=1000):
super(DenseNet, self).__init__()
supported_layers = [121, 161, 169, 201, 264]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
densenet_spec = {
121: (64, 32, [6, 12, 24, 16]),
161: (96, 48, [6, 12, 36, 24]),
169: (64, 32, [6, 12, 32, 32]),
201: (64, 32, [6, 12, 48, 32]),
264: (64, 32, [6, 12, 64, 48])
}
num_init_features, growth_rate, block_config = densenet_spec[layers]
self.conv1_func = ConvBNLayer(
num_channels=3,
num_filters=num_init_features,
filter_size=7,
stride=2,
pad=3,
act='relu',
name="conv1")
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
self.block_config = block_config
self.dense_block_func_list = []
self.transition_func_list = []
pre_num_channels = num_init_features
num_features = num_init_features
for i, num_layers in enumerate(block_config):
self.dense_block_func_list.append(
self.add_sublayer(
"db_conv_{}".format(i + 2),
DenseBlock(
num_channels=pre_num_channels,
num_layers=num_layers,
bn_size=bn_size,
growth_rate=growth_rate,
dropout=dropout,
name='conv' + str(i + 2))))
num_features = num_features + num_layers * growth_rate
pre_num_channels = num_features
if i != len(block_config) - 1:
self.transition_func_list.append(
self.add_sublayer(
"tr_conv{}_blk".format(i + 2),
TransitionLayer(
num_channels=pre_num_channels,
num_output_features=num_features // 2,
name='conv' + str(i + 2) + "_blk")))
pre_num_channels = num_features // 2
num_features = num_features // 2
self.batch_norm = BatchNorm(
num_features,
act="relu",
param_attr=ParamAttr(name='conv5_blk_bn_scale'),
bias_attr=ParamAttr(name='conv5_blk_bn_offset'),
moving_mean_name='conv5_blk_bn_mean',
moving_variance_name='conv5_blk_bn_variance')
self.pool2d_avg = AdaptiveAvgPool2D(1)
stdv = 1.0 / math.sqrt(num_features * 1.0)
self.out = Linear(
num_features,
class_num,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, input):
conv = self.conv1_func(input)
conv = self.pool2d_max(conv)
for i, num_layers in enumerate(self.block_config):
conv = self.dense_block_func_list[i](conv)
if i != len(self.block_config) - 1:
conv = self.transition_func_list[i](conv)
conv = self.batch_norm(conv)
y = self.pool2d_avg(conv)
y = paddle.flatten(y, start_axis=1, stop_axis=-1)
y = self.out(y)
return y
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def DenseNet121(pretrained=False, use_ssld=False, **kwargs):
model = DenseNet(layers=121, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["DenseNet121"], use_ssld=use_ssld)
return model
def DenseNet161(pretrained=False, use_ssld=False, **kwargs):
model = DenseNet(layers=161, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["DenseNet161"], use_ssld=use_ssld)
return model
def DenseNet169(pretrained=False, use_ssld=False, **kwargs):
model = DenseNet(layers=169, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["DenseNet169"], use_ssld=use_ssld)
return model
def DenseNet201(pretrained=False, use_ssld=False, **kwargs):
model = DenseNet(layers=201, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["DenseNet201"], use_ssld=use_ssld)
return model
def DenseNet264(pretrained=False, use_ssld=False, **kwargs):
model = DenseNet(layers=264, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["DenseNet264"], use_ssld=use_ssld)
return model