|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
import paddlers
|
|
|
|
from paddlers.rs_models.cd.layers import Conv3x3, MaxPool2x2, ConvTransposed3x3, Identity
|
|
|
|
from paddlers.rs_models.cd.layers import ChannelAttention
|
|
|
|
|
|
|
|
from attach_tools import Attach
|
|
|
|
|
|
|
|
attach = Attach.to(paddlers.rs_models.cd)
|
|
|
|
|
|
|
|
|
|
|
|
@attach
|
|
|
|
class CustomModel(nn.Layer):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels,
|
|
|
|
num_classes,
|
|
|
|
att_types='ct',
|
|
|
|
use_dropout=False):
|
|
|
|
super(CustomModel, self).__init__()
|
|
|
|
|
|
|
|
C1, C2, C3, C4, C5 = 16, 32, 64, 128, 256
|
|
|
|
|
|
|
|
self.use_dropout = use_dropout
|
|
|
|
|
|
|
|
self.conv11 = Conv3x3(in_channels, C1, norm=True, act=True)
|
|
|
|
self.do11 = self._make_dropout()
|
|
|
|
self.conv12 = Conv3x3(C1, C1, norm=True, act=True)
|
|
|
|
self.do12 = self._make_dropout()
|
|
|
|
self.pool1 = MaxPool2x2()
|
|
|
|
|
|
|
|
self.conv21 = Conv3x3(C1, C2, norm=True, act=True)
|
|
|
|
self.do21 = self._make_dropout()
|
|
|
|
self.conv22 = Conv3x3(C2, C2, norm=True, act=True)
|
|
|
|
self.do22 = self._make_dropout()
|
|
|
|
self.pool2 = MaxPool2x2()
|
|
|
|
|
|
|
|
self.conv31 = Conv3x3(C2, C3, norm=True, act=True)
|
|
|
|
self.do31 = self._make_dropout()
|
|
|
|
self.conv32 = Conv3x3(C3, C3, norm=True, act=True)
|
|
|
|
self.do32 = self._make_dropout()
|
|
|
|
self.conv33 = Conv3x3(C3, C3, norm=True, act=True)
|
|
|
|
self.do33 = self._make_dropout()
|
|
|
|
self.pool3 = MaxPool2x2()
|
|
|
|
|
|
|
|
self.conv41 = Conv3x3(C3, C4, norm=True, act=True)
|
|
|
|
self.do41 = self._make_dropout()
|
|
|
|
self.conv42 = Conv3x3(C4, C4, norm=True, act=True)
|
|
|
|
self.do42 = self._make_dropout()
|
|
|
|
self.conv43 = Conv3x3(C4, C4, norm=True, act=True)
|
|
|
|
self.do43 = self._make_dropout()
|
|
|
|
self.pool4 = MaxPool2x2()
|
|
|
|
|
|
|
|
self.upconv4 = ConvTransposed3x3(C4, C4, output_padding=1)
|
|
|
|
|
|
|
|
self.conv43d = Conv3x3(C5 + C4, C4, norm=True, act=True)
|
|
|
|
self.do43d = self._make_dropout()
|
|
|
|
self.conv42d = Conv3x3(C4, C4, norm=True, act=True)
|
|
|
|
self.do42d = self._make_dropout()
|
|
|
|
self.conv41d = Conv3x3(C4, C3, norm=True, act=True)
|
|
|
|
self.do41d = self._make_dropout()
|
|
|
|
|
|
|
|
self.upconv3 = ConvTransposed3x3(C3, C3, output_padding=1)
|
|
|
|
|
|
|
|
self.conv33d = Conv3x3(C4 + C3, C3, norm=True, act=True)
|
|
|
|
self.do33d = self._make_dropout()
|
|
|
|
self.conv32d = Conv3x3(C3, C3, norm=True, act=True)
|
|
|
|
self.do32d = self._make_dropout()
|
|
|
|
self.conv31d = Conv3x3(C3, C2, norm=True, act=True)
|
|
|
|
self.do31d = self._make_dropout()
|
|
|
|
|
|
|
|
self.upconv2 = ConvTransposed3x3(C2, C2, output_padding=1)
|
|
|
|
|
|
|
|
self.conv22d = Conv3x3(C3 + C2, C2, norm=True, act=True)
|
|
|
|
self.do22d = self._make_dropout()
|
|
|
|
self.conv21d = Conv3x3(C2, C1, norm=True, act=True)
|
|
|
|
self.do21d = self._make_dropout()
|
|
|
|
|
|
|
|
self.upconv1 = ConvTransposed3x3(C1, C1, output_padding=1)
|
|
|
|
|
|
|
|
self.conv12d = Conv3x3(C2 + C1, C1, norm=True, act=True)
|
|
|
|
self.do12d = self._make_dropout()
|
|
|
|
self.conv11d = Conv3x3(C1, num_classes)
|
|
|
|
|
|
|
|
self.init_weight()
|
|
|
|
|
|
|
|
self.att4 = MixedAttention(C4, att_types)
|
|
|
|
|
|
|
|
def forward(self, t1, t2):
|
|
|
|
# Encode t1
|
|
|
|
# Stage 1
|
|
|
|
x11 = self.do11(self.conv11(t1))
|
|
|
|
x12_1 = self.do12(self.conv12(x11))
|
|
|
|
x1p = self.pool1(x12_1)
|
|
|
|
|
|
|
|
# Stage 2
|
|
|
|
x21 = self.do21(self.conv21(x1p))
|
|
|
|
x22_1 = self.do22(self.conv22(x21))
|
|
|
|
x2p = self.pool2(x22_1)
|
|
|
|
|
|
|
|
# Stage 3
|
|
|
|
x31 = self.do31(self.conv31(x2p))
|
|
|
|
x32 = self.do32(self.conv32(x31))
|
|
|
|
x33_1 = self.do33(self.conv33(x32))
|
|
|
|
x3p = self.pool3(x33_1)
|
|
|
|
|
|
|
|
# Stage 4
|
|
|
|
x41 = self.do41(self.conv41(x3p))
|
|
|
|
x42 = self.do42(self.conv42(x41))
|
|
|
|
x43_1 = self.do43(self.conv43(x42))
|
|
|
|
x4p = self.pool4(x43_1)
|
|
|
|
|
|
|
|
# Encode t2
|
|
|
|
# Stage 1
|
|
|
|
x11 = self.do11(self.conv11(t2))
|
|
|
|
x12_2 = self.do12(self.conv12(x11))
|
|
|
|
x1p = self.pool1(x12_2)
|
|
|
|
|
|
|
|
# Stage 2
|
|
|
|
x21 = self.do21(self.conv21(x1p))
|
|
|
|
x22_2 = self.do22(self.conv22(x21))
|
|
|
|
x2p = self.pool2(x22_2)
|
|
|
|
|
|
|
|
# Stage 3
|
|
|
|
x31 = self.do31(self.conv31(x2p))
|
|
|
|
x32 = self.do32(self.conv32(x31))
|
|
|
|
x33_2 = self.do33(self.conv33(x32))
|
|
|
|
x3p = self.pool3(x33_2)
|
|
|
|
|
|
|
|
# Stage 4
|
|
|
|
x41 = self.do41(self.conv41(x3p))
|
|
|
|
x42 = self.do42(self.conv42(x41))
|
|
|
|
x43_2 = self.do43(self.conv43(x42))
|
|
|
|
x4p = self.pool4(x43_2)
|
|
|
|
|
|
|
|
# Decode
|
|
|
|
# Stage 4d
|
|
|
|
x4d = self.upconv4(x4p)
|
|
|
|
pad4 = (0, x43_1.shape[3] - x4d.shape[3], 0,
|
|
|
|
x43_1.shape[2] - x4d.shape[2])
|
|
|
|
x4d = F.pad(x4d, pad=pad4, mode='replicate')
|
|
|
|
x43_1, x43_2 = self.att4(x43_1, x43_2)
|
|
|
|
x4d = paddle.concat([x4d, x43_1, x43_2], 1)
|
|
|
|
x43d = self.do43d(self.conv43d(x4d))
|
|
|
|
x42d = self.do42d(self.conv42d(x43d))
|
|
|
|
x41d = self.do41d(self.conv41d(x42d))
|
|
|
|
|
|
|
|
# Stage 3d
|
|
|
|
x3d = self.upconv3(x41d)
|
|
|
|
pad3 = (0, x33_1.shape[3] - x3d.shape[3], 0,
|
|
|
|
x33_1.shape[2] - x3d.shape[2])
|
|
|
|
x3d = F.pad(x3d, pad=pad3, mode='replicate')
|
|
|
|
x3d = paddle.concat([x3d, x33_1, x33_2], 1)
|
|
|
|
x33d = self.do33d(self.conv33d(x3d))
|
|
|
|
x32d = self.do32d(self.conv32d(x33d))
|
|
|
|
x31d = self.do31d(self.conv31d(x32d))
|
|
|
|
|
|
|
|
# Stage 2d
|
|
|
|
x2d = self.upconv2(x31d)
|
|
|
|
pad2 = (0, x22_1.shape[3] - x2d.shape[3], 0,
|
|
|
|
x22_1.shape[2] - x2d.shape[2])
|
|
|
|
x2d = F.pad(x2d, pad=pad2, mode='replicate')
|
|
|
|
x2d = paddle.concat([x2d, x22_1, x22_2], 1)
|
|
|
|
x22d = self.do22d(self.conv22d(x2d))
|
|
|
|
x21d = self.do21d(self.conv21d(x22d))
|
|
|
|
|
|
|
|
# Stage 1d
|
|
|
|
x1d = self.upconv1(x21d)
|
|
|
|
pad1 = (0, x12_1.shape[3] - x1d.shape[3], 0,
|
|
|
|
x12_1.shape[2] - x1d.shape[2])
|
|
|
|
x1d = F.pad(x1d, pad=pad1, mode='replicate')
|
|
|
|
x1d = paddle.concat([x1d, x12_1, x12_2], 1)
|
|
|
|
x12d = self.do12d(self.conv12d(x1d))
|
|
|
|
x11d = self.conv11d(x12d)
|
|
|
|
|
|
|
|
return [x11d]
|
|
|
|
|
|
|
|
def init_weight(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _make_dropout(self):
|
|
|
|
if self.use_dropout:
|
|
|
|
return nn.Dropout2D(p=0.2)
|
|
|
|
else:
|
|
|
|
return Identity()
|
|
|
|
|
|
|
|
|
|
|
|
class MixedAttention(nn.Layer):
|
|
|
|
def __init__(self, in_channels, att_types='ct'):
|
|
|
|
super(MixedAttention, self).__init__()
|
|
|
|
|
|
|
|
self.att_types = att_types
|
|
|
|
|
|
|
|
if self.has_att_c:
|
|
|
|
self.att_c = ChannelAttention(in_channels, ratio=1)
|
|
|
|
self.norm_c1 = nn.BatchNorm(in_channels)
|
|
|
|
self.norm_c2 = nn.BatchNorm(in_channels)
|
|
|
|
else:
|
|
|
|
self.att_c = Identity()
|
|
|
|
self.norm_c1 = Identity()
|
|
|
|
self.norm_c2 = Identity()
|
|
|
|
|
|
|
|
if self.has_att_t:
|
|
|
|
self.att_t = ChannelAttention(2, ratio=1)
|
|
|
|
else:
|
|
|
|
self.att_t = Identity()
|
|
|
|
|
|
|
|
def forward(self, x1, x2):
|
|
|
|
if self.has_att_c:
|
|
|
|
x1 = self.att_c(x1) * x1
|
|
|
|
x1 = self.norm_c1(x1)
|
|
|
|
x2 = self.att_c(x2) * x2
|
|
|
|
x2 = self.norm_c2(x2)
|
|
|
|
|
|
|
|
if self.has_att_t:
|
|
|
|
b, c = x1.shape[:2]
|
|
|
|
y = paddle.stack([x1, x2], axis=2)
|
|
|
|
y = paddle.flatten(y, stop_axis=1)
|
|
|
|
y = self.att_t(y) * y
|
|
|
|
y = y.reshape((b, c, 2, *y.shape[2:]))
|
|
|
|
y1, y2 = y[:, :, 0], y[:, :, 1]
|
|
|
|
else:
|
|
|
|
y1, y2 = x1, x2
|
|
|
|
|
|
|
|
return y1, y2
|
|
|
|
|
|
|
|
@property
|
|
|
|
def has_att_c(self):
|
|
|
|
return 'c' in self.att_types
|
|
|
|
|
|
|
|
@property
|
|
|
|
def has_att_t(self):
|
|
|
|
return 't' in self.att_types
|