|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import copy
|
|
|
|
import random
|
|
|
|
from PIL import Image
|
|
|
|
import paddlers
|
|
|
|
|
|
|
|
try:
|
|
|
|
from collections.abc import Sequence
|
|
|
|
except Exception:
|
|
|
|
from collections import Sequence
|
|
|
|
from numbers import Number
|
|
|
|
from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \
|
|
|
|
horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \
|
|
|
|
crop_rle, expand_poly, expand_rle, resize_poly, resize_rle
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
"Compose", "Decode", "Resize", "RandomResize", "ResizeByShort",
|
|
|
|
"RandomResizeByShort", "ResizeByLong", "RandomHorizontalFlip",
|
|
|
|
"RandomVerticalFlip", "Normalize", "CenterCrop", "RandomCrop",
|
|
|
|
"RandomScaleAspect", "RandomExpand", "Padding", "MixupImage",
|
|
|
|
"RandomDistort", "RandomBlur", "ArrangeSegmenter", "ArrangeClassifier",
|
|
|
|
"ArrangeDetector"
|
|
|
|
]
|
|
|
|
|
|
|
|
interp_dict = {
|
|
|
|
'NEAREST': cv2.INTER_NEAREST,
|
|
|
|
'LINEAR': cv2.INTER_LINEAR,
|
|
|
|
'CUBIC': cv2.INTER_CUBIC,
|
|
|
|
'AREA': cv2.INTER_AREA,
|
|
|
|
'LANCZOS4': cv2.INTER_LANCZOS4
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Transform(object):
|
|
|
|
"""
|
|
|
|
Parent class of all data augmentation operations
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_segm(self, segms):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
if 'gt_bbox' in sample:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'])
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
def __call__(self, sample):
|
|
|
|
if isinstance(sample, Sequence):
|
|
|
|
sample = [self.apply(s) for s in sample]
|
|
|
|
else:
|
|
|
|
sample = self.apply(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Compose(Transform):
|
|
|
|
"""
|
|
|
|
Apply a series of data augmentation to the input.
|
|
|
|
All input images are in Height-Width-Channel ([H, W, C]) format.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
transforms (List[paddlers.transforms.Transform]): List of data preprocess or augmentations.
|
|
|
|
Raises:
|
|
|
|
TypeError: Invalid type of transforms.
|
|
|
|
ValueError: Invalid length of transforms.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, transforms):
|
|
|
|
super(Compose, self).__init__()
|
|
|
|
if not isinstance(transforms, list):
|
|
|
|
raise TypeError(
|
|
|
|
'Type of transforms is invalid. Must be List, but received is {}'
|
|
|
|
.format(type(transforms)))
|
|
|
|
if len(transforms) < 1:
|
|
|
|
raise ValueError(
|
|
|
|
'Length of transforms must not be less than 1, but received is {}'
|
|
|
|
.format(len(transforms)))
|
|
|
|
self.transforms = transforms
|
|
|
|
self.decode_image = Decode()
|
|
|
|
self.arrange_outputs = None
|
|
|
|
self.apply_im_only = False
|
|
|
|
|
|
|
|
def __call__(self, sample):
|
|
|
|
if self.apply_im_only and 'mask' in sample:
|
|
|
|
mask_backup = copy.deepcopy(sample['mask'])
|
|
|
|
del sample['mask']
|
|
|
|
|
|
|
|
sample = self.decode_image(sample)
|
|
|
|
|
|
|
|
for op in self.transforms:
|
|
|
|
# skip batch transforms amd mixup
|
|
|
|
if isinstance(op, (paddlers.transforms.BatchRandomResize,
|
|
|
|
paddlers.transforms.BatchRandomResizeByShort,
|
|
|
|
MixupImage)):
|
|
|
|
continue
|
|
|
|
sample = op(sample)
|
|
|
|
|
|
|
|
if self.arrange_outputs is not None:
|
|
|
|
if self.apply_im_only:
|
|
|
|
sample['mask'] = mask_backup
|
|
|
|
sample = self.arrange_outputs(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Decode(Transform):
|
|
|
|
"""
|
|
|
|
Decode image(s) in input.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
to_rgb (bool, optional): If True, convert input images from BGR format to RGB format. Defaults to True.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, to_rgb=True):
|
|
|
|
super(Decode, self).__init__()
|
|
|
|
self.to_rgb = to_rgb
|
|
|
|
|
|
|
|
def read_img(self, img_path):
|
|
|
|
return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR |
|
|
|
|
cv2.IMREAD_COLOR)
|
|
|
|
|
|
|
|
def apply_im(self, im_path):
|
|
|
|
if isinstance(im_path, str):
|
|
|
|
try:
|
|
|
|
image = self.read_img(im_path)
|
|
|
|
except:
|
|
|
|
raise ValueError('Cannot read the image file {}!'.format(
|
|
|
|
im_path))
|
|
|
|
else:
|
|
|
|
image = im_path
|
|
|
|
|
|
|
|
if self.to_rgb:
|
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
try:
|
|
|
|
mask = np.asarray(Image.open(mask))
|
|
|
|
except:
|
|
|
|
raise ValueError("Cannot read the mask file {}!".format(mask))
|
|
|
|
if len(mask.shape) != 2:
|
|
|
|
raise Exception(
|
|
|
|
"Mask should be a 1-channel image, but recevied is a {}-channel image.".
|
|
|
|
format(mask.shape[2]))
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sample (dict): Input sample, containing 'image' at least.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: Decoded sample.
|
|
|
|
|
|
|
|
"""
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
im_height, im_width, _ = sample['image'].shape
|
|
|
|
se_height, se_width = sample['mask'].shape
|
|
|
|
if im_height != se_height or im_width != se_width:
|
|
|
|
raise Exception(
|
|
|
|
"The height or width of the im is not same as the mask")
|
|
|
|
sample['im_shape'] = np.array(
|
|
|
|
sample['image'].shape[:2], dtype=np.float32)
|
|
|
|
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Resize(Transform):
|
|
|
|
"""
|
|
|
|
Resize input.
|
|
|
|
|
|
|
|
- If target_size is an int,resize the image(s) to (target_size, target_size).
|
|
|
|
- If target_size is a list or tuple, resize the image(s) to target_size.
|
|
|
|
Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target_size (int, List[int] or Tuple[int]): Target size. If int, the height and width share the same target_size.
|
|
|
|
Otherwise, target_size represents [target height, target width].
|
|
|
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
|
|
|
|
Interpolation method of resize. Defaults to 'LINEAR'.
|
|
|
|
keep_ratio (bool): the resize scale of width/height is same and width/height after resized is not greater
|
|
|
|
than target width/height. Defaults to False.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: Invalid type of target_size.
|
|
|
|
ValueError: Invalid interpolation method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, target_size, interp='LINEAR', keep_ratio=False):
|
|
|
|
super(Resize, self).__init__()
|
|
|
|
if not (interp == "RANDOM" or interp in interp_dict):
|
|
|
|
raise ValueError("interp should be one of {}".format(
|
|
|
|
interp_dict.keys()))
|
|
|
|
if isinstance(target_size, int):
|
|
|
|
target_size = (target_size, target_size)
|
|
|
|
else:
|
|
|
|
if not (isinstance(target_size,
|
|
|
|
(list, tuple)) and len(target_size) == 2):
|
|
|
|
raise TypeError(
|
|
|
|
"target_size should be an int or a list of length 2, but received {}".
|
|
|
|
format(target_size))
|
|
|
|
# (height, width)
|
|
|
|
self.target_size = target_size
|
|
|
|
self.interp = interp
|
|
|
|
self.keep_ratio = keep_ratio
|
|
|
|
|
|
|
|
def apply_im(self, image, interp, target_size):
|
|
|
|
image = cv2.resize(image, target_size, interpolation=interp)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask, target_size):
|
|
|
|
mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox, scale, target_size):
|
|
|
|
im_scale_x, im_scale_y = scale
|
|
|
|
bbox[:, 0::2] *= im_scale_x
|
|
|
|
bbox[:, 1::2] *= im_scale_y
|
|
|
|
bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[0])
|
|
|
|
bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[1])
|
|
|
|
return bbox
|
|
|
|
|
|
|
|
def apply_segm(self, segms, im_size, scale):
|
|
|
|
im_h, im_w = im_size
|
|
|
|
im_scale_x, im_scale_y = scale
|
|
|
|
resized_segms = []
|
|
|
|
for segm in segms:
|
|
|
|
if is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
resized_segms.append([
|
|
|
|
resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
|
|
|
|
])
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
resized_segms.append(
|
|
|
|
resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
|
|
|
|
|
|
|
|
return resized_segms
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.interp == "RANDOM":
|
|
|
|
interp = random.choice(list(interp_dict.values()))
|
|
|
|
else:
|
|
|
|
interp = interp_dict[self.interp]
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
|
|
|
|
im_scale_y = self.target_size[0] / im_h
|
|
|
|
im_scale_x = self.target_size[1] / im_w
|
|
|
|
target_size = (self.target_size[1], self.target_size[0])
|
|
|
|
if self.keep_ratio:
|
|
|
|
scale = min(im_scale_y, im_scale_x)
|
|
|
|
target_w = int(round(im_w * scale))
|
|
|
|
target_h = int(round(im_h * scale))
|
|
|
|
target_size = (target_w, target_h)
|
|
|
|
im_scale_y = target_h / im_h
|
|
|
|
im_scale_x = target_w / im_w
|
|
|
|
|
|
|
|
sample['image'] = self.apply_im(sample['image'], interp, target_size)
|
|
|
|
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'], target_size)
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(
|
|
|
|
sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(
|
|
|
|
sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y])
|
|
|
|
sample['im_shape'] = np.asarray(
|
|
|
|
sample['image'].shape[:2], dtype=np.float32)
|
|
|
|
if 'scale_factor' in sample:
|
|
|
|
scale_factor = sample['scale_factor']
|
|
|
|
sample['scale_factor'] = np.asarray(
|
|
|
|
[scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
|
|
|
|
dtype=np.float32)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomResize(Transform):
|
|
|
|
"""
|
|
|
|
Resize input to random sizes.
|
|
|
|
|
|
|
|
Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]):
|
|
|
|
Multiple target sizes, each target size is an int or list/tuple.
|
|
|
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
|
|
|
|
Interpolation method of resize. Defaults to 'LINEAR'.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: Invalid type of target_size.
|
|
|
|
ValueError: Invalid interpolation method.
|
|
|
|
|
|
|
|
See Also:
|
|
|
|
Resize input to a specific size.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, target_sizes, interp='LINEAR'):
|
|
|
|
super(RandomResize, self).__init__()
|
|
|
|
if not (interp == "RANDOM" or interp in interp_dict):
|
|
|
|
raise ValueError("interp should be one of {}".format(
|
|
|
|
interp_dict.keys()))
|
|
|
|
self.interp = interp
|
|
|
|
assert isinstance(target_sizes, list), \
|
|
|
|
"target_size must be List"
|
|
|
|
for i, item in enumerate(target_sizes):
|
|
|
|
if isinstance(item, int):
|
|
|
|
target_sizes[i] = (item, item)
|
|
|
|
self.target_size = target_sizes
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
height, width = random.choice(self.target_size)
|
|
|
|
resizer = Resize((height, width), interp=self.interp)
|
|
|
|
sample = resizer(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class ResizeByShort(Transform):
|
|
|
|
"""
|
|
|
|
Resize input with keeping the aspect ratio.
|
|
|
|
|
|
|
|
Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
short_size (int): Target size of the shorter side of the image(s).
|
|
|
|
max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
|
|
|
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: Invalid interpolation method.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, short_size=256, max_size=-1, interp='LINEAR'):
|
|
|
|
if not (interp == "RANDOM" or interp in interp_dict):
|
|
|
|
raise ValueError("interp should be one of {}".format(
|
|
|
|
interp_dict.keys()))
|
|
|
|
super(ResizeByShort, self).__init__()
|
|
|
|
self.short_size = short_size
|
|
|
|
self.max_size = max_size
|
|
|
|
self.interp = interp
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
im_short_size = min(im_h, im_w)
|
|
|
|
im_long_size = max(im_h, im_w)
|
|
|
|
scale = float(self.short_size) / float(im_short_size)
|
|
|
|
if 0 < self.max_size < np.round(scale * im_long_size):
|
|
|
|
scale = float(self.max_size) / float(im_long_size)
|
|
|
|
target_w = int(round(im_w * scale))
|
|
|
|
target_h = int(round(im_h * scale))
|
|
|
|
sample = Resize(
|
|
|
|
target_size=(target_h, target_w), interp=self.interp)(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomResizeByShort(Transform):
|
|
|
|
"""
|
|
|
|
Resize input to random sizes with keeping the aspect ratio.
|
|
|
|
|
|
|
|
Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
short_sizes (List[int]): Target size of the shorter side of the image(s).
|
|
|
|
max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
|
|
|
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
TypeError: Invalid type of target_size.
|
|
|
|
ValueError: Invalid interpolation method.
|
|
|
|
|
|
|
|
See Also:
|
|
|
|
ResizeByShort: Resize image(s) in input with keeping the aspect ratio.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, short_sizes, max_size=-1, interp='LINEAR'):
|
|
|
|
super(RandomResizeByShort, self).__init__()
|
|
|
|
if not (interp == "RANDOM" or interp in interp_dict):
|
|
|
|
raise ValueError("interp should be one of {}".format(
|
|
|
|
interp_dict.keys()))
|
|
|
|
self.interp = interp
|
|
|
|
assert isinstance(short_sizes, list), \
|
|
|
|
"short_sizes must be List"
|
|
|
|
|
|
|
|
self.short_sizes = short_sizes
|
|
|
|
self.max_size = max_size
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
short_size = random.choice(self.short_sizes)
|
|
|
|
resizer = ResizeByShort(
|
|
|
|
short_size=short_size, max_size=self.max_size, interp=self.interp)
|
|
|
|
sample = resizer(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class ResizeByLong(Transform):
|
|
|
|
def __init__(self, long_size=256, interp='LINEAR'):
|
|
|
|
super(ResizeByLong, self).__init__()
|
|
|
|
self.long_size = long_size
|
|
|
|
self.interp = interp
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
im_long_size = max(im_h, im_w)
|
|
|
|
scale = float(self.long_size) / float(im_long_size)
|
|
|
|
target_h = int(round(im_h * scale))
|
|
|
|
target_w = int(round(im_w * scale))
|
|
|
|
sample = Resize(
|
|
|
|
target_size=(target_h, target_w), interp=self.interp)(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomHorizontalFlip(Transform):
|
|
|
|
"""
|
|
|
|
Randomly flip the input horizontally.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prob(float, optional): Probability of flipping the input. Defaults to .5.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, prob=0.5):
|
|
|
|
super(RandomHorizontalFlip, self).__init__()
|
|
|
|
self.prob = prob
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = horizontal_flip(image)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
mask = horizontal_flip(mask)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox, width):
|
|
|
|
oldx1 = bbox[:, 0].copy()
|
|
|
|
oldx2 = bbox[:, 2].copy()
|
|
|
|
bbox[:, 0] = width - oldx2
|
|
|
|
bbox[:, 2] = width - oldx1
|
|
|
|
return bbox
|
|
|
|
|
|
|
|
def apply_segm(self, segms, height, width):
|
|
|
|
flipped_segms = []
|
|
|
|
for segm in segms:
|
|
|
|
if is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
flipped_segms.append(
|
|
|
|
[horizontal_flip_poly(poly, width) for poly in segm])
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
flipped_segms.append(horizontal_flip_rle(segm, height, width))
|
|
|
|
return flipped_segms
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if random.random() < self.prob:
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
|
|
|
|
im_w)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomVerticalFlip(Transform):
|
|
|
|
"""
|
|
|
|
Randomly flip the input vertically.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prob(float, optional): Probability of flipping the input. Defaults to .5.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, prob=0.5):
|
|
|
|
super(RandomVerticalFlip, self).__init__()
|
|
|
|
self.prob = prob
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = vertical_flip(image)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
mask = vertical_flip(mask)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox, height):
|
|
|
|
oldy1 = bbox[:, 1].copy()
|
|
|
|
oldy2 = bbox[:, 3].copy()
|
|
|
|
bbox[:, 0] = height - oldy2
|
|
|
|
bbox[:, 2] = height - oldy1
|
|
|
|
return bbox
|
|
|
|
|
|
|
|
def apply_segm(self, segms, height, width):
|
|
|
|
flipped_segms = []
|
|
|
|
for segm in segms:
|
|
|
|
if is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
flipped_segms.append(
|
|
|
|
[vertical_flip_poly(poly, height) for poly in segm])
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
flipped_segms.append(vertical_flip_rle(segm, height, width))
|
|
|
|
return flipped_segms
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if random.random() < self.prob:
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
|
|
|
|
im_w)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Normalize(Transform):
|
|
|
|
"""
|
|
|
|
Apply min-max normalization to the image(s) in input.
|
|
|
|
1. im = (im - min_value) * 1 / (max_value - min_value)
|
|
|
|
2. im = im - mean
|
|
|
|
3. im = im / std
|
|
|
|
|
|
|
|
Args:
|
|
|
|
mean(List[float] or Tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406].
|
|
|
|
std(List[float] or Tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225].
|
|
|
|
min_val(List[float] or Tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ].
|
|
|
|
max_val(List[float] or Tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.].
|
|
|
|
is_scale(bool, optional): If True, the image pixel values will be divided by 255.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
mean=[0.485, 0.456, 0.406],
|
|
|
|
std=[0.229, 0.224, 0.225],
|
|
|
|
min_val=[0, 0, 0],
|
|
|
|
max_val=[255., 255., 255.],
|
|
|
|
is_scale=True):
|
|
|
|
super(Normalize, self).__init__()
|
|
|
|
from functools import reduce
|
|
|
|
if reduce(lambda x, y: x * y, std) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
'Std should not have 0, but received is {}'.format(std))
|
|
|
|
if is_scale:
|
|
|
|
if reduce(lambda x, y: x * y,
|
|
|
|
[a - b for a, b in zip(max_val, min_val)]) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
'(max_val - min_val) should not have 0, but received is {}'.
|
|
|
|
format((np.asarray(max_val) - np.asarray(min_val)).tolist(
|
|
|
|
)))
|
|
|
|
|
|
|
|
self.mean = mean
|
|
|
|
self.std = std
|
|
|
|
self.min_val = min_val
|
|
|
|
self.max_val = max_val
|
|
|
|
self.is_scale = is_scale
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = image.astype(np.float32)
|
|
|
|
mean = np.asarray(
|
|
|
|
self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :]
|
|
|
|
std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :]
|
|
|
|
image = normalize(image, mean, std, self.min_val, self.max_val)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class CenterCrop(Transform):
|
|
|
|
"""
|
|
|
|
Crop the input at the center.
|
|
|
|
1. Locate the center of the image.
|
|
|
|
2. Crop the sample.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
crop_size(int, optional): target size of the cropped image(s). Defaults to 224.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, crop_size=224):
|
|
|
|
super(CenterCrop, self).__init__()
|
|
|
|
self.crop_size = crop_size
|
|
|
|
|
|
|
|
def apply_im(self, image):
|
|
|
|
image = center_crop(image, self.crop_size)
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_mask(self, mask):
|
|
|
|
mask = center_crop(mask, self.crop_size)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = self.apply_im(sample['image'])
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomCrop(Transform):
|
|
|
|
"""
|
|
|
|
Randomly crop the input.
|
|
|
|
1. Compute the height and width of cropped area according to aspect_ratio and scaling.
|
|
|
|
2. Locate the upper left corner of cropped area randomly.
|
|
|
|
3. Crop the image(s).
|
|
|
|
4. Resize the cropped area to crop_size by crop_size.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
crop_size(int, List[int] or Tuple[int]): Target size of the cropped area. If None, the cropped area will not be
|
|
|
|
resized. Defaults to None.
|
|
|
|
aspect_ratio (List[float], optional): Aspect ratio of cropped region in [min, max] format. Defaults to [.5, 2.].
|
|
|
|
thresholds (List[float], optional): Iou thresholds to decide a valid bbox crop.
|
|
|
|
Defaults to [.0, .1, .3, .5, .7, .9].
|
|
|
|
scaling (List[float], optional): Ratio between the cropped region and the original image in [min, max] format.
|
|
|
|
Defaults to [.3, 1.].
|
|
|
|
num_attempts (int, optional): The number of tries before giving up. Defaults to 50.
|
|
|
|
allow_no_crop (bool, optional): Whether returning without doing crop is allowed. Defaults to True.
|
|
|
|
cover_all_box (bool, optional): Whether to ensure all bboxes are covered in the final crop. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
crop_size=None,
|
|
|
|
aspect_ratio=[.5, 2.],
|
|
|
|
thresholds=[.0, .1, .3, .5, .7, .9],
|
|
|
|
scaling=[.3, 1.],
|
|
|
|
num_attempts=50,
|
|
|
|
allow_no_crop=True,
|
|
|
|
cover_all_box=False):
|
|
|
|
super(RandomCrop, self).__init__()
|
|
|
|
self.crop_size = crop_size
|
|
|
|
self.aspect_ratio = aspect_ratio
|
|
|
|
self.thresholds = thresholds
|
|
|
|
self.scaling = scaling
|
|
|
|
self.num_attempts = num_attempts
|
|
|
|
self.allow_no_crop = allow_no_crop
|
|
|
|
self.cover_all_box = cover_all_box
|
|
|
|
|
|
|
|
def _generate_crop_info(self, sample):
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
thresholds = self.thresholds
|
|
|
|
if self.allow_no_crop:
|
|
|
|
thresholds.append('no_crop')
|
|
|
|
np.random.shuffle(thresholds)
|
|
|
|
for thresh in thresholds:
|
|
|
|
if thresh == 'no_crop':
|
|
|
|
return None
|
|
|
|
for i in range(self.num_attempts):
|
|
|
|
crop_box = self._get_crop_box(im_h, im_w)
|
|
|
|
if crop_box is None:
|
|
|
|
continue
|
|
|
|
iou = self._iou_matrix(
|
|
|
|
sample['gt_bbox'],
|
|
|
|
np.array(
|
|
|
|
[crop_box], dtype=np.float32))
|
|
|
|
if iou.max() < thresh:
|
|
|
|
continue
|
|
|
|
if self.cover_all_box and iou.min() < thresh:
|
|
|
|
continue
|
|
|
|
cropped_box, valid_ids = self._crop_box_with_center_constraint(
|
|
|
|
sample['gt_bbox'],
|
|
|
|
np.array(
|
|
|
|
crop_box, dtype=np.float32))
|
|
|
|
if valid_ids.size > 0:
|
|
|
|
return crop_box, cropped_box, valid_ids
|
|
|
|
else:
|
|
|
|
for i in range(self.num_attempts):
|
|
|
|
crop_box = self._get_crop_box(im_h, im_w)
|
|
|
|
if crop_box is None:
|
|
|
|
continue
|
|
|
|
return crop_box, None, None
|
|
|
|
return None
|
|
|
|
|
|
|
|
def _get_crop_box(self, im_h, im_w):
|
|
|
|
scale = np.random.uniform(*self.scaling)
|
|
|
|
if self.aspect_ratio is not None:
|
|
|
|
min_ar, max_ar = self.aspect_ratio
|
|
|
|
aspect_ratio = np.random.uniform(
|
|
|
|
max(min_ar, scale**2), min(max_ar, scale**-2))
|
|
|
|
h_scale = scale / np.sqrt(aspect_ratio)
|
|
|
|
w_scale = scale * np.sqrt(aspect_ratio)
|
|
|
|
else:
|
|
|
|
h_scale = np.random.uniform(*self.scaling)
|
|
|
|
w_scale = np.random.uniform(*self.scaling)
|
|
|
|
crop_h = im_h * h_scale
|
|
|
|
crop_w = im_w * w_scale
|
|
|
|
if self.aspect_ratio is None:
|
|
|
|
if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
|
|
|
|
return None
|
|
|
|
crop_h = int(crop_h)
|
|
|
|
crop_w = int(crop_w)
|
|
|
|
crop_y = np.random.randint(0, im_h - crop_h)
|
|
|
|
crop_x = np.random.randint(0, im_w - crop_w)
|
|
|
|
return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
|
|
|
|
|
|
|
|
def _iou_matrix(self, a, b):
|
|
|
|
tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
|
|
|
br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
|
|
|
|
|
|
|
area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
|
|
|
|
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
|
|
|
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
|
|
|
|
area_o = (area_a[:, np.newaxis] + area_b - area_i)
|
|
|
|
return area_i / (area_o + 1e-10)
|
|
|
|
|
|
|
|
def _crop_box_with_center_constraint(self, box, crop):
|
|
|
|
cropped_box = box.copy()
|
|
|
|
|
|
|
|
cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
|
|
|
|
cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
|
|
|
|
cropped_box[:, :2] -= crop[:2]
|
|
|
|
cropped_box[:, 2:] -= crop[:2]
|
|
|
|
|
|
|
|
centers = (box[:, :2] + box[:, 2:]) / 2
|
|
|
|
valid = np.logical_and(crop[:2] <= centers,
|
|
|
|
centers < crop[2:]).all(axis=1)
|
|
|
|
valid = np.logical_and(
|
|
|
|
valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
|
|
|
|
|
|
|
|
return cropped_box, np.where(valid)[0]
|
|
|
|
|
|
|
|
def _crop_segm(self, segms, valid_ids, crop, height, width):
|
|
|
|
crop_segms = []
|
|
|
|
for id in valid_ids:
|
|
|
|
segm = segms[id]
|
|
|
|
if is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
crop_segms.append(crop_poly(segm, crop))
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
crop_segms.append(crop_rle(segm, crop, height, width))
|
|
|
|
|
|
|
|
return crop_segms
|
|
|
|
|
|
|
|
def apply_im(self, image, crop):
|
|
|
|
x1, y1, x2, y2 = crop
|
|
|
|
return image[y1:y2, x1:x2, :]
|
|
|
|
|
|
|
|
def apply_mask(self, mask, crop):
|
|
|
|
x1, y1, x2, y2 = crop
|
|
|
|
return mask[y1:y2, x1:x2, ...]
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
crop_info = self._generate_crop_info(sample)
|
|
|
|
if crop_info is not None:
|
|
|
|
crop_box, cropped_box, valid_ids = crop_info
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
sample['image'] = self.apply_im(sample['image'], crop_box)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
crop_polys = self._crop_segm(
|
|
|
|
sample['gt_poly'],
|
|
|
|
valid_ids,
|
|
|
|
np.array(
|
|
|
|
crop_box, dtype=np.int64),
|
|
|
|
im_h,
|
|
|
|
im_w)
|
|
|
|
if [] in crop_polys:
|
|
|
|
delete_id = list()
|
|
|
|
valid_polys = list()
|
|
|
|
for idx, poly in enumerate(crop_polys):
|
|
|
|
if not crop_poly:
|
|
|
|
delete_id.append(idx)
|
|
|
|
else:
|
|
|
|
valid_polys.append(poly)
|
|
|
|
valid_ids = np.delete(valid_ids, delete_id)
|
|
|
|
if not valid_polys:
|
|
|
|
return sample
|
|
|
|
sample['gt_poly'] = valid_polys
|
|
|
|
else:
|
|
|
|
sample['gt_poly'] = crop_polys
|
|
|
|
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
|
|
|
|
sample['gt_class'] = np.take(
|
|
|
|
sample['gt_class'], valid_ids, axis=0)
|
|
|
|
if 'gt_score' in sample:
|
|
|
|
sample['gt_score'] = np.take(
|
|
|
|
sample['gt_score'], valid_ids, axis=0)
|
|
|
|
if 'is_crowd' in sample:
|
|
|
|
sample['is_crowd'] = np.take(
|
|
|
|
sample['is_crowd'], valid_ids, axis=0)
|
|
|
|
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'], crop_box)
|
|
|
|
|
|
|
|
if self.crop_size is not None:
|
|
|
|
sample = Resize(self.crop_size)(sample)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomScaleAspect(Transform):
|
|
|
|
"""
|
|
|
|
Crop input image(s) and resize back to original sizes.
|
|
|
|
Args:
|
|
|
|
min_scale (float):Minimum ratio between the cropped region and the original image.
|
|
|
|
If 0, image(s) will not be cropped. Defaults to .5.
|
|
|
|
aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, min_scale=0.5, aspect_ratio=0.33):
|
|
|
|
super(RandomScaleAspect, self).__init__()
|
|
|
|
self.min_scale = min_scale
|
|
|
|
self.aspect_ratio = aspect_ratio
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.min_scale != 0 and self.aspect_ratio != 0:
|
|
|
|
img_height, img_width = sample['image'].shape[:2]
|
|
|
|
sample = RandomCrop(
|
|
|
|
crop_size=(img_height, img_width),
|
|
|
|
aspect_ratio=[self.aspect_ratio, 1. / self.aspect_ratio],
|
|
|
|
scaling=[self.min_scale, 1.],
|
|
|
|
num_attempts=10,
|
|
|
|
allow_no_crop=False)(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomExpand(Transform):
|
|
|
|
"""
|
|
|
|
Randomly expand the input by padding according to random offsets.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
upper_ratio(float, optional): The maximum ratio to which the original image is expanded. Defaults to 4..
|
|
|
|
prob(float, optional): The probability of apply expanding. Defaults to .5.
|
|
|
|
im_padding_value(List[float] or Tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5).
|
|
|
|
label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
|
|
|
|
|
|
|
|
See Also:
|
|
|
|
paddlers.transforms.Padding
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
upper_ratio=4.,
|
|
|
|
prob=.5,
|
|
|
|
im_padding_value=(127.5, 127.5, 127.5),
|
|
|
|
label_padding_value=255):
|
|
|
|
super(RandomExpand, self).__init__()
|
|
|
|
assert upper_ratio > 1.01, "expand ratio must be larger than 1.01"
|
|
|
|
self.upper_ratio = upper_ratio
|
|
|
|
self.prob = prob
|
|
|
|
assert isinstance(im_padding_value, (Number, Sequence)), \
|
|
|
|
"fill value must be either float or sequence"
|
|
|
|
if isinstance(im_padding_value, Number):
|
|
|
|
im_padding_value = (im_padding_value, ) * 3
|
|
|
|
if not isinstance(im_padding_value, tuple):
|
|
|
|
im_padding_value = tuple(im_padding_value)
|
|
|
|
self.im_padding_value = im_padding_value
|
|
|
|
self.label_padding_value = label_padding_value
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if random.random() < self.prob:
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
ratio = np.random.uniform(1., self.upper_ratio)
|
|
|
|
h = int(im_h * ratio)
|
|
|
|
w = int(im_w * ratio)
|
|
|
|
if h > im_h and w > im_w:
|
|
|
|
y = np.random.randint(0, h - im_h)
|
|
|
|
x = np.random.randint(0, w - im_w)
|
|
|
|
target_size = (h, w)
|
|
|
|
offsets = (x, y)
|
|
|
|
sample = Padding(
|
|
|
|
target_size=target_size,
|
|
|
|
pad_mode=-1,
|
|
|
|
offsets=offsets,
|
|
|
|
im_padding_value=self.im_padding_value,
|
|
|
|
label_padding_value=self.label_padding_value)(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Padding(Transform):
|
|
|
|
def __init__(self,
|
|
|
|
target_size=None,
|
|
|
|
pad_mode=0,
|
|
|
|
offsets=None,
|
|
|
|
im_padding_value=(127.5, 127.5, 127.5),
|
|
|
|
label_padding_value=255,
|
|
|
|
size_divisor=32):
|
|
|
|
"""
|
|
|
|
Pad image to a specified size or multiple of size_divisor.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target_size(int, Sequence, optional): Image target size, if None, pad to multiple of size_divisor. Defaults to None.
|
|
|
|
pad_mode({-1, 0, 1, 2}, optional): Pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
|
|
|
|
if 0, only pad to right and bottom. If 1, pad according to center. If 2, only pad left and top. Defaults to 0.
|
|
|
|
im_padding_value(Sequence[float]): RGB value of pad area. Defaults to (127.5, 127.5, 127.5).
|
|
|
|
label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
|
|
|
|
size_divisor(int): Image width and height after padding is a multiple of coarsest_stride.
|
|
|
|
"""
|
|
|
|
super(Padding, self).__init__()
|
|
|
|
if isinstance(target_size, (list, tuple)):
|
|
|
|
if len(target_size) != 2:
|
|
|
|
raise ValueError(
|
|
|
|
'`target_size` should include 2 elements, but it is {}'.
|
|
|
|
format(target_size))
|
|
|
|
if isinstance(target_size, int):
|
|
|
|
target_size = [target_size] * 2
|
|
|
|
|
|
|
|
assert pad_mode in [
|
|
|
|
-1, 0, 1, 2
|
|
|
|
], 'currently only supports four modes [-1, 0, 1, 2]'
|
|
|
|
if pad_mode == -1:
|
|
|
|
assert offsets, 'if pad_mode is -1, offsets should not be None'
|
|
|
|
|
|
|
|
self.target_size = target_size
|
|
|
|
self.size_divisor = size_divisor
|
|
|
|
self.pad_mode = pad_mode
|
|
|
|
self.offsets = offsets
|
|
|
|
self.im_padding_value = im_padding_value
|
|
|
|
self.label_padding_value = label_padding_value
|
|
|
|
|
|
|
|
def apply_im(self, image, offsets, target_size):
|
|
|
|
x, y = offsets
|
|
|
|
im_h, im_w = image.shape[:2]
|
|
|
|
h, w = target_size
|
|
|
|
canvas = np.ones((h, w, 3), dtype=np.float32)
|
|
|
|
canvas *= np.array(self.im_padding_value, dtype=np.float32)
|
|
|
|
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
|
|
|
|
return canvas
|
|
|
|
|
|
|
|
def apply_mask(self, mask, offsets, target_size):
|
|
|
|
x, y = offsets
|
|
|
|
im_h, im_w = mask.shape[:2]
|
|
|
|
h, w = target_size
|
|
|
|
canvas = np.ones((h, w), dtype=np.float32)
|
|
|
|
canvas *= np.array(self.label_padding_value, dtype=np.float32)
|
|
|
|
canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32)
|
|
|
|
return canvas
|
|
|
|
|
|
|
|
def apply_bbox(self, bbox, offsets):
|
|
|
|
return bbox + np.array(offsets * 2, dtype=np.float32)
|
|
|
|
|
|
|
|
def apply_segm(self, segms, offsets, im_size, size):
|
|
|
|
x, y = offsets
|
|
|
|
height, width = im_size
|
|
|
|
h, w = size
|
|
|
|
expanded_segms = []
|
|
|
|
for segm in segms:
|
|
|
|
if is_poly(segm):
|
|
|
|
# Polygon format
|
|
|
|
expanded_segms.append(
|
|
|
|
[expand_poly(poly, x, y) for poly in segm])
|
|
|
|
else:
|
|
|
|
# RLE format
|
|
|
|
expanded_segms.append(
|
|
|
|
expand_rle(segm, x, y, height, width, h, w))
|
|
|
|
return expanded_segms
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
im_h, im_w = sample['image'].shape[:2]
|
|
|
|
if self.target_size:
|
|
|
|
h, w = self.target_size
|
|
|
|
assert (
|
|
|
|
im_h <= h and im_w <= w
|
|
|
|
), 'target size ({}, {}) cannot be less than image size ({}, {})'\
|
|
|
|
.format(h, w, im_h, im_w)
|
|
|
|
else:
|
|
|
|
h = (np.ceil(im_h / self.size_divisor) *
|
|
|
|
self.size_divisor).astype(int)
|
|
|
|
w = (np.ceil(im_w / self.size_divisor) *
|
|
|
|
self.size_divisor).astype(int)
|
|
|
|
|
|
|
|
if h == im_h and w == im_w:
|
|
|
|
return sample
|
|
|
|
|
|
|
|
if self.pad_mode == -1:
|
|
|
|
offsets = self.offsets
|
|
|
|
elif self.pad_mode == 0:
|
|
|
|
offsets = [0, 0]
|
|
|
|
elif self.pad_mode == 1:
|
|
|
|
offsets = [(w - im_w) // 2, (h - im_h) // 2]
|
|
|
|
else:
|
|
|
|
offsets = [w - im_w, h - im_h]
|
|
|
|
|
|
|
|
sample['image'] = self.apply_im(sample['image'], offsets, (h, w))
|
|
|
|
if 'mask' in sample:
|
|
|
|
sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w))
|
|
|
|
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
|
|
|
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
|
|
|
|
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
|
|
|
sample['gt_poly'] = self.apply_segm(
|
|
|
|
sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class MixupImage(Transform):
|
|
|
|
def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
|
|
|
|
"""
|
|
|
|
Mixup two images and their gt_bbbox/gt_score.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
alpha (float, optional): Alpha parameter of beta distribution. Defaults to 1.5.
|
|
|
|
beta (float, optional): Beta parameter of beta distribution. Defaults to 1.5.
|
|
|
|
"""
|
|
|
|
super(MixupImage, self).__init__()
|
|
|
|
if alpha <= 0.0:
|
|
|
|
raise ValueError("alpha should be positive in {}".format(self))
|
|
|
|
if beta <= 0.0:
|
|
|
|
raise ValueError("beta should be positive in {}".format(self))
|
|
|
|
self.alpha = alpha
|
|
|
|
self.beta = beta
|
|
|
|
self.mixup_epoch = mixup_epoch
|
|
|
|
|
|
|
|
def apply_im(self, image1, image2, factor):
|
|
|
|
h = max(image1.shape[0], image2.shape[0])
|
|
|
|
w = max(image1.shape[1], image2.shape[1])
|
|
|
|
img = np.zeros((h, w, image1.shape[2]), 'float32')
|
|
|
|
img[:image1.shape[0], :image1.shape[1], :] = \
|
|
|
|
image1.astype('float32') * factor
|
|
|
|
img[:image2.shape[0], :image2.shape[1], :] += \
|
|
|
|
image2.astype('float32') * (1.0 - factor)
|
|
|
|
return img.astype('uint8')
|
|
|
|
|
|
|
|
def __call__(self, sample):
|
|
|
|
if not isinstance(sample, Sequence):
|
|
|
|
return sample
|
|
|
|
|
|
|
|
assert len(sample) == 2, 'mixup need two samples'
|
|
|
|
|
|
|
|
factor = np.random.beta(self.alpha, self.beta)
|
|
|
|
factor = max(0.0, min(1.0, factor))
|
|
|
|
if factor >= 1.0:
|
|
|
|
return sample[0]
|
|
|
|
if factor <= 0.0:
|
|
|
|
return sample[1]
|
|
|
|
image = self.apply_im(sample[0]['image'], sample[1]['image'], factor)
|
|
|
|
result = copy.deepcopy(sample[0])
|
|
|
|
result['image'] = image
|
|
|
|
# apply bbox and score
|
|
|
|
if 'gt_bbox' in sample[0]:
|
|
|
|
gt_bbox1 = sample[0]['gt_bbox']
|
|
|
|
gt_bbox2 = sample[1]['gt_bbox']
|
|
|
|
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
|
|
|
|
result['gt_bbox'] = gt_bbox
|
|
|
|
if 'gt_poly' in sample[0]:
|
|
|
|
gt_poly1 = sample[0]['gt_poly']
|
|
|
|
gt_poly2 = sample[1]['gt_poly']
|
|
|
|
gt_poly = gt_poly1 + gt_poly2
|
|
|
|
result['gt_poly'] = gt_poly
|
|
|
|
if 'gt_class' in sample[0]:
|
|
|
|
gt_class1 = sample[0]['gt_class']
|
|
|
|
gt_class2 = sample[1]['gt_class']
|
|
|
|
gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
|
|
|
|
result['gt_class'] = gt_class
|
|
|
|
|
|
|
|
gt_score1 = np.ones_like(sample[0]['gt_class'])
|
|
|
|
gt_score2 = np.ones_like(sample[1]['gt_class'])
|
|
|
|
gt_score = np.concatenate(
|
|
|
|
(gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
|
|
|
|
result['gt_score'] = gt_score
|
|
|
|
if 'is_crowd' in sample[0]:
|
|
|
|
is_crowd1 = sample[0]['is_crowd']
|
|
|
|
is_crowd2 = sample[1]['is_crowd']
|
|
|
|
is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
|
|
|
|
result['is_crowd'] = is_crowd
|
|
|
|
if 'difficult' in sample[0]:
|
|
|
|
is_difficult1 = sample[0]['difficult']
|
|
|
|
is_difficult2 = sample[1]['difficult']
|
|
|
|
is_difficult = np.concatenate(
|
|
|
|
(is_difficult1, is_difficult2), axis=0)
|
|
|
|
result['difficult'] = is_difficult
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
class RandomDistort(Transform):
|
|
|
|
"""
|
|
|
|
Random color distortion.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
brightness_range(float, optional): Range of brightness distortion. Defaults to .5.
|
|
|
|
brightness_prob(float, optional): Probability of brightness distortion. Defaults to .5.
|
|
|
|
contrast_range(float, optional): Range of contrast distortion. Defaults to .5.
|
|
|
|
contrast_prob(float, optional): Probability of contrast distortion. Defaults to .5.
|
|
|
|
saturation_range(float, optional): Range of saturation distortion. Defaults to .5.
|
|
|
|
saturation_prob(float, optional): Probability of saturation distortion. Defaults to .5.
|
|
|
|
hue_range(float, optional): Range of hue distortion. Defaults to .5.
|
|
|
|
hue_prob(float, optional): Probability of hue distortion. Defaults to .5.
|
|
|
|
random_apply (bool, optional): whether to apply in random (yolo) or fixed (SSD)
|
|
|
|
order. Defaults to True.
|
|
|
|
count (int, optional): the number of doing distortion. Defaults to 4.
|
|
|
|
shuffle_channel (bool, optional): whether to swap channels randomly. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
brightness_range=0.5,
|
|
|
|
brightness_prob=0.5,
|
|
|
|
contrast_range=0.5,
|
|
|
|
contrast_prob=0.5,
|
|
|
|
saturation_range=0.5,
|
|
|
|
saturation_prob=0.5,
|
|
|
|
hue_range=18,
|
|
|
|
hue_prob=0.5,
|
|
|
|
random_apply=True,
|
|
|
|
count=4,
|
|
|
|
shuffle_channel=False):
|
|
|
|
super(RandomDistort, self).__init__()
|
|
|
|
self.brightness_range = [1 - brightness_range, 1 + brightness_range]
|
|
|
|
self.brightness_prob = brightness_prob
|
|
|
|
self.contrast_range = [1 - contrast_range, 1 + contrast_range]
|
|
|
|
self.contrast_prob = contrast_prob
|
|
|
|
self.saturation_range = [1 - saturation_range, 1 + saturation_range]
|
|
|
|
self.saturation_prob = saturation_prob
|
|
|
|
self.hue_range = [1 - hue_range, 1 + hue_range]
|
|
|
|
self.hue_prob = hue_prob
|
|
|
|
self.random_apply = random_apply
|
|
|
|
self.count = count
|
|
|
|
self.shuffle_channel = shuffle_channel
|
|
|
|
|
|
|
|
def apply_hue(self, image):
|
|
|
|
low, high = self.hue_range
|
|
|
|
if np.random.uniform(0., 1.) < self.hue_prob:
|
|
|
|
return image
|
|
|
|
|
|
|
|
image = image.astype(np.float32)
|
|
|
|
# it works, but result differ from HSV version
|
|
|
|
delta = np.random.uniform(low, high)
|
|
|
|
u = np.cos(delta * np.pi)
|
|
|
|
w = np.sin(delta * np.pi)
|
|
|
|
bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
|
|
|
|
tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
|
|
|
|
[0.211, -0.523, 0.311]])
|
|
|
|
ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
|
|
|
|
[1.0, -1.107, 1.705]])
|
|
|
|
t = np.dot(np.dot(ityiq, bt), tyiq).T
|
|
|
|
image = np.dot(image, t)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_saturation(self, image):
|
|
|
|
low, high = self.saturation_range
|
|
|
|
if np.random.uniform(0., 1.) < self.saturation_prob:
|
|
|
|
return image
|
|
|
|
delta = np.random.uniform(low, high)
|
|
|
|
image = image.astype(np.float32)
|
|
|
|
# it works, but result differ from HSV version
|
|
|
|
gray = image * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
|
|
|
|
gray = gray.sum(axis=2, keepdims=True)
|
|
|
|
gray *= (1.0 - delta)
|
|
|
|
image *= delta
|
|
|
|
image += gray
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_contrast(self, image):
|
|
|
|
low, high = self.contrast_range
|
|
|
|
if np.random.uniform(0., 1.) < self.contrast_prob:
|
|
|
|
return image
|
|
|
|
delta = np.random.uniform(low, high)
|
|
|
|
image = image.astype(np.float32)
|
|
|
|
image *= delta
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply_brightness(self, image):
|
|
|
|
low, high = self.brightness_range
|
|
|
|
if np.random.uniform(0., 1.) < self.brightness_prob:
|
|
|
|
return image
|
|
|
|
delta = np.random.uniform(low, high)
|
|
|
|
image = image.astype(np.float32)
|
|
|
|
image += delta
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.random_apply:
|
|
|
|
functions = [
|
|
|
|
self.apply_brightness, self.apply_contrast,
|
|
|
|
self.apply_saturation, self.apply_hue
|
|
|
|
]
|
|
|
|
distortions = np.random.permutation(functions)[:self.count]
|
|
|
|
for func in distortions:
|
|
|
|
sample['image'] = func(sample['image'])
|
|
|
|
return sample
|
|
|
|
|
|
|
|
sample['image'] = self.apply_brightness(sample['image'])
|
|
|
|
mode = np.random.randint(0, 2)
|
|
|
|
if mode:
|
|
|
|
sample['image'] = self.apply_contrast(sample['image'])
|
|
|
|
sample['image'] = self.apply_saturation(sample['image'])
|
|
|
|
sample['image'] = self.apply_hue(sample['image'])
|
|
|
|
if not mode:
|
|
|
|
sample['image'] = self.apply_contrast(sample['image'])
|
|
|
|
|
|
|
|
if self.shuffle_channel:
|
|
|
|
if np.random.randint(0, 2):
|
|
|
|
sample['image'] = sample['image'][..., np.random.permutation(
|
|
|
|
3)]
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class RandomBlur(Transform):
|
|
|
|
"""
|
|
|
|
Randomly blur input image(s).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prob (float): Probability of blurring.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, prob=0.1):
|
|
|
|
super(RandomBlur, self).__init__()
|
|
|
|
self.prob = prob
|
|
|
|
|
|
|
|
def apply_im(self, image, radius):
|
|
|
|
image = cv2.GaussianBlur(image, (radius, radius), 0, 0)
|
|
|
|
return image
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.prob <= 0:
|
|
|
|
n = 0
|
|
|
|
elif self.prob >= 1:
|
|
|
|
n = 1
|
|
|
|
else:
|
|
|
|
n = int(1.0 / self.prob)
|
|
|
|
if n > 0:
|
|
|
|
if np.random.randint(0, n) == 0:
|
|
|
|
radius = np.random.randint(3, 10)
|
|
|
|
if radius % 2 != 1:
|
|
|
|
radius = radius + 1
|
|
|
|
if radius > 9:
|
|
|
|
radius = 9
|
|
|
|
sample['image'] = self.apply_im(sample['image'], radius)
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class _PadBox(Transform):
|
|
|
|
def __init__(self, num_max_boxes=50):
|
|
|
|
"""
|
|
|
|
Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_max_boxes (int, optional): the max number of bboxes. Defaults to 50.
|
|
|
|
"""
|
|
|
|
self.num_max_boxes = num_max_boxes
|
|
|
|
super(_PadBox, self).__init__()
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
gt_num = min(self.num_max_boxes, len(sample['gt_bbox']))
|
|
|
|
num_max = self.num_max_boxes
|
|
|
|
pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
|
|
|
|
sample['gt_bbox'] = pad_bbox
|
|
|
|
if 'gt_class' in sample:
|
|
|
|
pad_class = np.zeros((num_max, ), dtype=np.int32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
|
|
|
|
sample['gt_class'] = pad_class
|
|
|
|
if 'gt_score' in sample:
|
|
|
|
pad_score = np.zeros((num_max, ), dtype=np.float32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
|
|
|
|
sample['gt_score'] = pad_score
|
|
|
|
# in training, for example in op ExpandImage,
|
|
|
|
# the bbox and gt_class is expanded, but the difficult is not,
|
|
|
|
# so, judging by it's length
|
|
|
|
if 'difficult' in sample:
|
|
|
|
pad_diff = np.zeros((num_max, ), dtype=np.int32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
|
|
|
|
sample['difficult'] = pad_diff
|
|
|
|
if 'is_crowd' in sample:
|
|
|
|
pad_crowd = np.zeros((num_max, ), dtype=np.int32)
|
|
|
|
if gt_num > 0:
|
|
|
|
pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
|
|
|
|
sample['is_crowd'] = pad_crowd
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class _NormalizeBox(Transform):
|
|
|
|
def __init__(self):
|
|
|
|
super(_NormalizeBox, self).__init__()
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
height, width = sample['image'].shape[:2]
|
|
|
|
for i in range(sample['gt_bbox'].shape[0]):
|
|
|
|
sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width
|
|
|
|
sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height
|
|
|
|
sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width
|
|
|
|
sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height
|
|
|
|
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class _BboxXYXY2XYWH(Transform):
|
|
|
|
"""
|
|
|
|
Convert bbox XYXY format to XYWH format.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super(_BboxXYXY2XYWH, self).__init__()
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
bbox = sample['gt_bbox']
|
|
|
|
bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
|
|
|
|
bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
|
|
|
|
sample['gt_bbox'] = bbox
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class _Permute(Transform):
|
|
|
|
def __init__(self):
|
|
|
|
super(_Permute, self).__init__()
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
sample['image'] = permute(sample['image'], False)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class ArrangeSegmenter(Transform):
|
|
|
|
def __init__(self, mode):
|
|
|
|
super(ArrangeSegmenter, self).__init__()
|
|
|
|
if mode not in ['train', 'eval', 'test', 'quant']:
|
|
|
|
raise ValueError(
|
|
|
|
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
|
|
|
|
)
|
|
|
|
self.mode = mode
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if 'mask' in sample:
|
|
|
|
mask = sample['mask']
|
|
|
|
|
|
|
|
image = permute(sample['image'], False)
|
|
|
|
if self.mode == 'train':
|
|
|
|
mask = mask.astype('int64')
|
|
|
|
return image, mask
|
|
|
|
if self.mode == 'eval':
|
|
|
|
mask = np.asarray(Image.open(mask))
|
|
|
|
mask = mask[np.newaxis, :, :].astype('int64')
|
|
|
|
return image, mask
|
|
|
|
if self.mode == 'test':
|
|
|
|
return image,
|
|
|
|
|
|
|
|
|
|
|
|
class ArrangeClassifier(Transform):
|
|
|
|
def __init__(self, mode):
|
|
|
|
super(ArrangeClassifier, self).__init__()
|
|
|
|
if mode not in ['train', 'eval', 'test', 'quant']:
|
|
|
|
raise ValueError(
|
|
|
|
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
|
|
|
|
)
|
|
|
|
self.mode = mode
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
image = permute(sample['image'], False)
|
|
|
|
if self.mode in ['train', 'eval']:
|
|
|
|
return image, sample['label']
|
|
|
|
else:
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
class ArrangeDetector(Transform):
|
|
|
|
def __init__(self, mode):
|
|
|
|
super(ArrangeDetector, self).__init__()
|
|
|
|
if mode not in ['train', 'eval', 'test', 'quant']:
|
|
|
|
raise ValueError(
|
|
|
|
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
|
|
|
|
)
|
|
|
|
self.mode = mode
|
|
|
|
|
|
|
|
def apply(self, sample):
|
|
|
|
if self.mode == 'eval' and 'gt_poly' in sample:
|
|
|
|
del sample['gt_poly']
|
|
|
|
return sample
|