|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
from utils import Raster, raster2uint8, save_geotiff, timer
|
|
|
|
|
|
|
|
class MatchError(Exception):
|
|
|
|
def __str__(self):
|
|
|
|
return "Cannot match two images."
|
|
|
|
|
|
|
|
|
|
|
|
def _calcu_tf(im1, im2):
|
|
|
|
orb = cv2.AKAZE_create()
|
|
|
|
kp1, des1 = orb.detectAndCompute(im1, None)
|
|
|
|
kp2, des2 = orb.detectAndCompute(im2, None)
|
|
|
|
bf = cv2.BFMatcher()
|
|
|
|
mathces = bf.knnMatch(des2, des1, k=2)
|
|
|
|
good_matches = []
|
|
|
|
for m, n in mathces:
|
|
|
|
if m.distance < 0.75 * n.distance:
|
|
|
|
good_matches.append([m])
|
|
|
|
if len(good_matches) < 4:
|
|
|
|
raise MatchError()
|
|
|
|
src_automatic_points = np.float32([kp2[m[0].queryIdx].pt \
|
|
|
|
for m in good_matches]).reshape(-1, 1, 2)
|
|
|
|
den_automatic_points = np.float32([kp1[m[0].trainIdx].pt \
|
|
|
|
for m in good_matches]).reshape(-1, 1, 2)
|
|
|
|
H, _ = cv2.findHomography(src_automatic_points, den_automatic_points,
|
|
|
|
cv2.RANSAC, 5.0)
|
|
|
|
return H
|
|
|
|
|
|
|
|
|
|
|
|
def _get_match_img(raster, bands):
|
|
|
|
if len(bands) not in [1, 3]:
|
|
|
|
raise ValueError("The lenght of bands must be 1 or 3.")
|
|
|
|
band_array = []
|
|
|
|
for b in bands:
|
|
|
|
band_i = raster.GetRasterBand(b).ReadAsArray()
|
|
|
|
band_array.append(band_i)
|
|
|
|
if len(band_array) == 1:
|
|
|
|
ima = raster2uint8(band_array[0])
|
|
|
|
else:
|
|
|
|
ima = raster2uint8(np.stack(band_array, axis=-1))
|
|
|
|
ima = cv2.cvtColor(ima, cv2.COLOR_RGB2GRAY)
|
|
|
|
return ima
|
|
|
|
|
|
|
|
|
|
|
|
@timer
|
|
|
|
def matching(im1_path, im2_path, im1_bands=[1, 2, 3], im2_bands=[1, 2, 3]):
|
|
|
|
im1_ras = Raster(im1_path)
|
|
|
|
im2_ras = Raster(im2_path)
|
|
|
|
im1 = _get_match_img(im1_ras._src_data, im1_bands)
|
|
|
|
im2 = _get_match_img(im2_ras._src_data, im2_bands)
|
|
|
|
H = _calcu_tf(im1, im2)
|
|
|
|
# test
|
|
|
|
# im2_t = cv2.warpPerspective(im2, H, (im1.shape[1], im1.shape[0]))
|
|
|
|
# cv2.imwrite("B_M.png", cv2.cvtColor(im2_t, cv2.COLOR_RGB2BGR))
|
|
|
|
im2_arr_t = cv2.warpPerspective(im2_ras.getArray(), H,
|
|
|
|
(im1_ras.width, im1_ras.height))
|
|
|
|
save_path = im2_ras.path.replace(("." + im2_ras.ext_type), "_M.tif")
|
|
|
|
save_geotiff(im2_arr_t, save_path, im1_ras.proj, im1_ras.geot, im1_ras.datatype)
|
|
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="input parameters")
|
|
|
|
parser.add_argument("--im1_path", type=str, required=True, \
|
|
|
|
help="The path of time1 image (with geoinfo).")
|
|
|
|
parser.add_argument("--im2_path", type=str, required=True, \
|
|
|
|
help="The path of time2 image.")
|
|
|
|
parser.add_argument("--im1_bands", type=int, nargs="+", default=[1, 2, 3], \
|
|
|
|
help="The time1 image's band used for matching, RGB or monochrome, `[1, 2, 3]` is the default.")
|
|
|
|
parser.add_argument("--im2_bands", type=int, nargs="+", default=[1, 2, 3], \
|
|
|
|
help="The time2 image's band used for matching, RGB or monochrome, `[1, 2, 3]` is the default.")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parser.parse_args()
|
|
|
|
matching(args.im1_path, args.im2_path, args.im1_bands, args.im2_bands)
|