You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
3.8 KiB
98 lines
3.8 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os
|
||
|
|
||
|
from .dataset import Dataset
|
||
|
from paddlers.models.ppseg.utils.download import download_file_and_uncompress
|
||
|
from paddlers.models.ppseg.utils import seg_env
|
||
|
from paddlers.models.ppseg.cvlibs import manager
|
||
|
from paddlers.models.ppseg.transforms import Compose
|
||
|
|
||
|
URL = "https://paddleseg.bj.bcebos.com/dataset/optic_disc_seg.zip"
|
||
|
|
||
|
|
||
|
@manager.DATASETS.add_component
|
||
|
class OpticDiscSeg(Dataset):
|
||
|
"""
|
||
|
OpticDiscSeg dataset is extraced from iChallenge-AMD
|
||
|
(https://ai.baidu.com/broad/subordinate?dataset=amd).
|
||
|
|
||
|
Args:
|
||
|
transforms (list): Transforms for image.
|
||
|
dataset_root (str): The dataset directory. Default: None
|
||
|
mode (str, optional): Which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'.
|
||
|
edge (bool, optional): Whether to compute edge while training. Default: False
|
||
|
"""
|
||
|
NUM_CLASSES = 2
|
||
|
|
||
|
def __init__(self,
|
||
|
dataset_root=None,
|
||
|
transforms=None,
|
||
|
mode='train',
|
||
|
edge=False):
|
||
|
self.dataset_root = dataset_root
|
||
|
self.transforms = Compose(transforms)
|
||
|
mode = mode.lower()
|
||
|
self.mode = mode
|
||
|
self.file_list = list()
|
||
|
self.num_classes = self.NUM_CLASSES
|
||
|
self.ignore_index = 255
|
||
|
self.edge = edge
|
||
|
|
||
|
if mode not in ['train', 'val', 'test']:
|
||
|
raise ValueError(
|
||
|
"`mode` should be 'train', 'val' or 'test', but got {}.".format(
|
||
|
mode))
|
||
|
|
||
|
if self.transforms is None:
|
||
|
raise ValueError("`transforms` is necessary, but it is None.")
|
||
|
|
||
|
if self.dataset_root is None:
|
||
|
self.dataset_root = download_file_and_uncompress(
|
||
|
url=URL,
|
||
|
savepath=seg_env.DATA_HOME,
|
||
|
extrapath=seg_env.DATA_HOME)
|
||
|
elif not os.path.exists(self.dataset_root):
|
||
|
self.dataset_root = os.path.normpath(self.dataset_root)
|
||
|
savepath, extraname = self.dataset_root.rsplit(
|
||
|
sep=os.path.sep, maxsplit=1)
|
||
|
self.dataset_root = download_file_and_uncompress(
|
||
|
url=URL,
|
||
|
savepath=savepath,
|
||
|
extrapath=savepath,
|
||
|
extraname=extraname)
|
||
|
|
||
|
if mode == 'train':
|
||
|
file_path = os.path.join(self.dataset_root, 'train_list.txt')
|
||
|
elif mode == 'val':
|
||
|
file_path = os.path.join(self.dataset_root, 'val_list.txt')
|
||
|
else:
|
||
|
file_path = os.path.join(self.dataset_root, 'test_list.txt')
|
||
|
|
||
|
with open(file_path, 'r') as f:
|
||
|
for line in f:
|
||
|
items = line.strip().split()
|
||
|
if len(items) != 2:
|
||
|
if mode == 'train' or mode == 'val':
|
||
|
raise Exception(
|
||
|
"File list format incorrect! It should be"
|
||
|
" image_name label_name\\n")
|
||
|
image_path = os.path.join(self.dataset_root, items[0])
|
||
|
grt_path = None
|
||
|
else:
|
||
|
image_path = os.path.join(self.dataset_root, items[0])
|
||
|
grt_path = os.path.join(self.dataset_root, items[1])
|
||
|
self.file_list.append([image_path, grt_path])
|