|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
|
|
from .backbones import resnet
|
|
|
|
from .layers import Conv1x1, Conv3x3, get_norm_layer, Identity
|
|
|
|
from .param_init import KaimingInitMixin
|
|
|
|
|
|
|
|
|
|
|
|
class STANet(nn.Layer):
|
|
|
|
"""
|
|
|
|
The STANet implementation based on PaddlePaddle.
|
|
|
|
|
|
|
|
The original article refers to
|
|
|
|
H. Chen and Z. Shi, "A Spatial-Temporal Attention-Based Method and a New
|
|
|
|
Dataset for Remote Sensing Image Change Detection"
|
|
|
|
(https://www.mdpi.com/2072-4292/12/10/1662).
|
|
|
|
|
|
|
|
Note that this implementation differs from the original work in two aspects:
|
|
|
|
1. We do not use multiple dilation rates in layer 4 of the ResNet backbone.
|
|
|
|
2. A classification head is used in place of the original metric learning-based
|
|
|
|
head to stablize the training process.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_channels (int): Number of bands of the input images.
|
|
|
|
num_classes (int): Number of target classes.
|
|
|
|
att_type (str, optional): The attention module used in the model. Options
|
|
|
|
are 'PAM' and 'BAM'. Default: 'BAM'.
|
|
|
|
ds_factor (int, optional): Downsampling factor of the attention modules.
|
|
|
|
When `ds_factor` is set to values greater than 1, the input features
|
|
|
|
will first be processed by an average pooling layer with the kernel size
|
|
|
|
of `ds_factor`, before being used to calculate the attention scores.
|
|
|
|
Default: 1.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: When `att_type` has an illeagal value (unsupported attention
|
|
|
|
type).
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_channels, num_classes, att_type='BAM', ds_factor=1):
|
|
|
|
super(STANet, self).__init__()
|
|
|
|
|
|
|
|
WIDTH = 64
|
|
|
|
|
|
|
|
self.extract = build_feat_extractor(in_ch=in_channels, width=WIDTH)
|
|
|
|
self.attend = build_sta_module(
|
|
|
|
in_ch=WIDTH, att_type=att_type, ds=ds_factor)
|
|
|
|
self.conv_out = nn.Sequential(
|
|
|
|
Conv3x3(
|
|
|
|
WIDTH, WIDTH, norm=True, act=True),
|
|
|
|
Conv3x3(WIDTH, num_classes))
|
|
|
|
|
|
|
|
self.init_weight()
|
|
|
|
|
|
|
|
def forward(self, t1, t2):
|
|
|
|
f1 = self.extract(t1)
|
|
|
|
f2 = self.extract(t2)
|
|
|
|
|
|
|
|
f1, f2 = self.attend(f1, f2)
|
|
|
|
|
|
|
|
y = paddle.abs(f1 - f2)
|
|
|
|
y = F.interpolate(
|
|
|
|
y, size=paddle.shape(t1)[2:], mode='bilinear', align_corners=True)
|
|
|
|
|
|
|
|
pred = self.conv_out(y)
|
|
|
|
return [pred]
|
|
|
|
|
|
|
|
def init_weight(self):
|
|
|
|
# Do nothing here as the encoder and decoder weights have already been initialized.
|
|
|
|
# Note however that currently self.attend and self.conv_out use the default initilization method.
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def build_feat_extractor(in_ch, width):
|
|
|
|
return nn.Sequential(Backbone(in_ch, 'resnet18'), Decoder(width))
|
|
|
|
|
|
|
|
|
|
|
|
def build_sta_module(in_ch, att_type, ds):
|
|
|
|
if att_type == 'BAM':
|
|
|
|
return Attention(BAM(in_ch, ds))
|
|
|
|
elif att_type == 'PAM':
|
|
|
|
return Attention(PAM(in_ch, ds))
|
|
|
|
else:
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
|
|
|
|
class Backbone(nn.Layer, KaimingInitMixin):
|
|
|
|
def __init__(self, in_ch, arch, pretrained=True, strides=(2, 1, 2, 2, 2)):
|
|
|
|
super(Backbone, self).__init__()
|
|
|
|
|
|
|
|
if arch == 'resnet18':
|
|
|
|
self.resnet = resnet.resnet18(
|
|
|
|
pretrained=pretrained,
|
|
|
|
strides=strides,
|
|
|
|
norm_layer=get_norm_layer())
|
|
|
|
elif arch == 'resnet34':
|
|
|
|
self.resnet = resnet.resnet34(
|
|
|
|
pretrained=pretrained,
|
|
|
|
strides=strides,
|
|
|
|
norm_layer=get_norm_layer())
|
|
|
|
elif arch == 'resnet50':
|
|
|
|
self.resnet = resnet.resnet50(
|
|
|
|
pretrained=pretrained,
|
|
|
|
strides=strides,
|
|
|
|
norm_layer=get_norm_layer())
|
|
|
|
else:
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
self._trim_resnet()
|
|
|
|
|
|
|
|
if in_ch != 3:
|
|
|
|
self.resnet.conv1 = nn.Conv2D(
|
|
|
|
in_ch,
|
|
|
|
64,
|
|
|
|
kernel_size=7,
|
|
|
|
stride=strides[0],
|
|
|
|
padding=3,
|
|
|
|
bias_attr=False)
|
|
|
|
|
|
|
|
if not pretrained:
|
|
|
|
self.init_weight()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.resnet.conv1(x)
|
|
|
|
x = self.resnet.bn1(x)
|
|
|
|
x = self.resnet.relu(x)
|
|
|
|
x = self.resnet.maxpool(x)
|
|
|
|
|
|
|
|
x1 = self.resnet.layer1(x)
|
|
|
|
x2 = self.resnet.layer2(x1)
|
|
|
|
x3 = self.resnet.layer3(x2)
|
|
|
|
x4 = self.resnet.layer4(x3)
|
|
|
|
|
|
|
|
return x1, x2, x3, x4
|
|
|
|
|
|
|
|
def _trim_resnet(self):
|
|
|
|
self.resnet.avgpool = Identity()
|
|
|
|
self.resnet.fc = Identity()
|
|
|
|
|
|
|
|
|
|
|
|
class Decoder(nn.Layer, KaimingInitMixin):
|
|
|
|
def __init__(self, f_ch):
|
|
|
|
super(Decoder, self).__init__()
|
|
|
|
self.dr1 = Conv1x1(64, 96, norm=True, act=True)
|
|
|
|
self.dr2 = Conv1x1(128, 96, norm=True, act=True)
|
|
|
|
self.dr3 = Conv1x1(256, 96, norm=True, act=True)
|
|
|
|
self.dr4 = Conv1x1(512, 96, norm=True, act=True)
|
|
|
|
self.conv_out = nn.Sequential(
|
|
|
|
Conv3x3(
|
|
|
|
384, 256, norm=True, act=True),
|
|
|
|
nn.Dropout(0.5),
|
|
|
|
Conv1x1(
|
|
|
|
256, f_ch, norm=True, act=True))
|
|
|
|
|
|
|
|
self.init_weight()
|
|
|
|
|
|
|
|
def forward(self, feats):
|
|
|
|
f1 = self.dr1(feats[0])
|
|
|
|
f2 = self.dr2(feats[1])
|
|
|
|
f3 = self.dr3(feats[2])
|
|
|
|
f4 = self.dr4(feats[3])
|
|
|
|
|
|
|
|
f2 = F.interpolate(
|
|
|
|
f2, size=paddle.shape(f1)[2:], mode='bilinear', align_corners=True)
|
|
|
|
f3 = F.interpolate(
|
|
|
|
f3, size=paddle.shape(f1)[2:], mode='bilinear', align_corners=True)
|
|
|
|
f4 = F.interpolate(
|
|
|
|
f4, size=paddle.shape(f1)[2:], mode='bilinear', align_corners=True)
|
|
|
|
|
|
|
|
x = paddle.concat([f1, f2, f3, f4], axis=1)
|
|
|
|
y = self.conv_out(x)
|
|
|
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class BAM(nn.Layer):
|
|
|
|
def __init__(self, in_ch, ds):
|
|
|
|
super(BAM, self).__init__()
|
|
|
|
|
|
|
|
self.ds = ds
|
|
|
|
self.pool = nn.AvgPool2D(self.ds)
|
|
|
|
|
|
|
|
self.val_ch = in_ch
|
|
|
|
self.key_ch = in_ch // 8
|
|
|
|
self.conv_q = Conv1x1(in_ch, self.key_ch)
|
|
|
|
self.conv_k = Conv1x1(in_ch, self.key_ch)
|
|
|
|
self.conv_v = Conv1x1(in_ch, self.val_ch)
|
|
|
|
|
|
|
|
self.softmax = nn.Softmax(axis=-1)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x.flatten(-2)
|
|
|
|
x_rs = self.pool(x)
|
|
|
|
|
|
|
|
b, c, h, w = paddle.shape(x_rs)
|
|
|
|
query = self.conv_q(x_rs).reshape((b, -1, h * w)).transpose((0, 2, 1))
|
|
|
|
key = self.conv_k(x_rs).reshape((b, -1, h * w))
|
|
|
|
energy = paddle.bmm(query, key)
|
|
|
|
energy = (self.key_ch**(-0.5)) * energy
|
|
|
|
|
|
|
|
attention = self.softmax(energy)
|
|
|
|
|
|
|
|
value = self.conv_v(x_rs).reshape((b, -1, w * h))
|
|
|
|
|
|
|
|
out = paddle.bmm(value, attention.transpose((0, 2, 1)))
|
|
|
|
out = out.reshape((b, c, h, w))
|
|
|
|
|
|
|
|
out = F.interpolate(out, scale_factor=self.ds)
|
|
|
|
out = out + x
|
|
|
|
return out.reshape(tuple(out.shape[:-1]) + (out.shape[-1] // 2, 2))
|
|
|
|
|
|
|
|
|
|
|
|
class PAMBlock(nn.Layer):
|
|
|
|
def __init__(self, in_ch, scale=1, ds=1):
|
|
|
|
super(PAMBlock, self).__init__()
|
|
|
|
|
|
|
|
self.scale = scale
|
|
|
|
self.ds = ds
|
|
|
|
self.pool = nn.AvgPool2D(self.ds)
|
|
|
|
|
|
|
|
self.val_ch = in_ch
|
|
|
|
self.key_ch = in_ch // 8
|
|
|
|
self.conv_q = Conv1x1(in_ch, self.key_ch, norm=True)
|
|
|
|
self.conv_k = Conv1x1(in_ch, self.key_ch, norm=True)
|
|
|
|
self.conv_v = Conv1x1(in_ch, self.val_ch)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x_rs = self.pool(x)
|
|
|
|
|
|
|
|
# Get query, key, and value.
|
|
|
|
query = self.conv_q(x_rs)
|
|
|
|
key = self.conv_k(x_rs)
|
|
|
|
value = self.conv_v(x_rs)
|
|
|
|
|
|
|
|
# Split the whole image into subregions.
|
|
|
|
b, c, h, w = x_rs.shape
|
|
|
|
|
|
|
|
query = self._split_subregions(query)
|
|
|
|
key = self._split_subregions(key)
|
|
|
|
value = self._split_subregions(value)
|
|
|
|
|
|
|
|
# Perform subregion-wise attention.
|
|
|
|
out = self._attend(query, key, value)
|
|
|
|
|
|
|
|
# Stack subregions to reconstruct the whole image.
|
|
|
|
out = self._recons_whole(out, b, c, h, w)
|
|
|
|
out = F.interpolate(out, scale_factor=self.ds)
|
|
|
|
return out
|
|
|
|
|
|
|
|
def _attend(self, query, key, value):
|
|
|
|
energy = paddle.bmm(query.transpose((0, 2, 1)),
|
|
|
|
key) # Batched matrix multiplication
|
|
|
|
energy = (self.key_ch**(-0.5)) * energy
|
|
|
|
attention = F.softmax(energy, axis=-1)
|
|
|
|
out = paddle.bmm(value, attention.transpose((0, 2, 1)))
|
|
|
|
return out
|
|
|
|
|
|
|
|
def _split_subregions(self, x):
|
|
|
|
b, c, h, w = x.shape
|
|
|
|
assert h % self.scale == 0 and w % self.scale == 0
|
|
|
|
x = x.reshape(
|
|
|
|
(b, c, self.scale, h // self.scale, self.scale, w // self.scale))
|
|
|
|
|
|
|
|
x = x.transpose((0, 2, 4, 1, 3, 5))
|
|
|
|
|
|
|
|
x = x.reshape((b * self.scale * self.scale, c, -1))
|
|
|
|
return x
|
|
|
|
|
|
|
|
def _recons_whole(self, x, b, c, h, w):
|
|
|
|
x = x.reshape(
|
|
|
|
(b, self.scale, self.scale, c, h // self.scale, w // self.scale))
|
|
|
|
x = x.transpose((0, 3, 1, 4, 2, 5)).reshape((b, c, h, w))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class PAM(nn.Layer):
|
|
|
|
def __init__(self, in_ch, ds, scales=(1, 2, 4, 8)):
|
|
|
|
super(PAM, self).__init__()
|
|
|
|
|
|
|
|
self.stages = nn.LayerList(
|
|
|
|
[PAMBlock(
|
|
|
|
in_ch, scale=s, ds=ds) for s in scales])
|
|
|
|
self.conv_out = Conv1x1(in_ch * len(scales), in_ch, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x.flatten(-2)
|
|
|
|
res = [stage(x) for stage in self.stages]
|
|
|
|
|
|
|
|
out = self.conv_out(paddle.concat(res, axis=1))
|
|
|
|
|
|
|
|
return out.reshape(tuple(out.shape[:-1]) + (out.shape[-1] // 2, 2))
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Layer):
|
|
|
|
def __init__(self, att):
|
|
|
|
super(Attention, self).__init__()
|
|
|
|
self.att = att
|
|
|
|
|
|
|
|
def forward(self, x1, x2):
|
|
|
|
x = paddle.stack([x1, x2], axis=-1)
|
|
|
|
y = self.att(x)
|
|
|
|
return y[..., 0], y[..., 1]
|