You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
405 lines
14 KiB
405 lines
14 KiB
2 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle import ParamAttr
|
||
|
from paddle.regularizer import L2Decay
|
||
|
from paddlers.models.ppdet.core.workspace import register, serializable
|
||
|
from paddlers.models.ppdet.modeling.initializer import conv_init_
|
||
|
from ..shape_spec import ShapeSpec
|
||
|
|
||
|
__all__ = [
|
||
|
'CSPDarkNet', 'BaseConv', 'DWConv', 'BottleNeck', 'SPPLayer', 'SPPFLayer'
|
||
|
]
|
||
|
|
||
|
|
||
|
class BaseConv(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
ksize,
|
||
|
stride,
|
||
|
groups=1,
|
||
|
bias=False,
|
||
|
act="silu"):
|
||
|
super(BaseConv, self).__init__()
|
||
|
self.conv = nn.Conv2D(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size=ksize,
|
||
|
stride=stride,
|
||
|
padding=(ksize - 1) // 2,
|
||
|
groups=groups,
|
||
|
bias_attr=bias)
|
||
|
self.bn = nn.BatchNorm2D(
|
||
|
out_channels,
|
||
|
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
|
||
|
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
|
||
|
|
||
|
self._init_weights()
|
||
|
|
||
|
def _init_weights(self):
|
||
|
conv_init_(self.conv)
|
||
|
|
||
|
def forward(self, x):
|
||
|
# use 'x * F.sigmoid(x)' replace 'silu'
|
||
|
x = self.bn(self.conv(x))
|
||
|
y = x * F.sigmoid(x)
|
||
|
return y
|
||
|
|
||
|
|
||
|
class DWConv(nn.Layer):
|
||
|
"""Depthwise Conv"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
ksize,
|
||
|
stride=1,
|
||
|
bias=False,
|
||
|
act="silu"):
|
||
|
super(DWConv, self).__init__()
|
||
|
self.dw_conv = BaseConv(
|
||
|
in_channels,
|
||
|
in_channels,
|
||
|
ksize=ksize,
|
||
|
stride=stride,
|
||
|
groups=in_channels,
|
||
|
bias=bias,
|
||
|
act=act)
|
||
|
self.pw_conv = BaseConv(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
ksize=1,
|
||
|
stride=1,
|
||
|
groups=1,
|
||
|
bias=bias,
|
||
|
act=act)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.pw_conv(self.dw_conv(x))
|
||
|
|
||
|
|
||
|
class Focus(nn.Layer):
|
||
|
"""Focus width and height information into channel space, used in YOLOX."""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
ksize=3,
|
||
|
stride=1,
|
||
|
bias=False,
|
||
|
act="silu"):
|
||
|
super(Focus, self).__init__()
|
||
|
self.conv = BaseConv(
|
||
|
in_channels * 4,
|
||
|
out_channels,
|
||
|
ksize=ksize,
|
||
|
stride=stride,
|
||
|
bias=bias,
|
||
|
act=act)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
# inputs [bs, C, H, W] -> outputs [bs, 4C, W/2, H/2]
|
||
|
top_left = inputs[:, :, 0::2, 0::2]
|
||
|
top_right = inputs[:, :, 0::2, 1::2]
|
||
|
bottom_left = inputs[:, :, 1::2, 0::2]
|
||
|
bottom_right = inputs[:, :, 1::2, 1::2]
|
||
|
outputs = paddle.concat(
|
||
|
[top_left, bottom_left, top_right, bottom_right], 1)
|
||
|
return self.conv(outputs)
|
||
|
|
||
|
|
||
|
class BottleNeck(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
shortcut=True,
|
||
|
expansion=0.5,
|
||
|
depthwise=False,
|
||
|
bias=False,
|
||
|
act="silu"):
|
||
|
super(BottleNeck, self).__init__()
|
||
|
hidden_channels = int(out_channels * expansion)
|
||
|
Conv = DWConv if depthwise else BaseConv
|
||
|
self.conv1 = BaseConv(
|
||
|
in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act)
|
||
|
self.conv2 = Conv(
|
||
|
hidden_channels,
|
||
|
out_channels,
|
||
|
ksize=3,
|
||
|
stride=1,
|
||
|
bias=bias,
|
||
|
act=act)
|
||
|
self.add_shortcut = shortcut and in_channels == out_channels
|
||
|
|
||
|
def forward(self, x):
|
||
|
y = self.conv2(self.conv1(x))
|
||
|
if self.add_shortcut:
|
||
|
y = y + x
|
||
|
return y
|
||
|
|
||
|
|
||
|
class SPPLayer(nn.Layer):
|
||
|
"""Spatial Pyramid Pooling (SPP) layer used in YOLOv3-SPP and YOLOX"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_sizes=(5, 9, 13),
|
||
|
bias=False,
|
||
|
act="silu"):
|
||
|
super(SPPLayer, self).__init__()
|
||
|
hidden_channels = in_channels // 2
|
||
|
self.conv1 = BaseConv(
|
||
|
in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act)
|
||
|
self.maxpoolings = nn.LayerList([
|
||
|
nn.MaxPool2D(
|
||
|
kernel_size=ks, stride=1, padding=ks // 2)
|
||
|
for ks in kernel_sizes
|
||
|
])
|
||
|
conv2_channels = hidden_channels * (len(kernel_sizes) + 1)
|
||
|
self.conv2 = BaseConv(
|
||
|
conv2_channels, out_channels, ksize=1, stride=1, bias=bias, act=act)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv1(x)
|
||
|
x = paddle.concat([x] + [mp(x) for mp in self.maxpoolings], axis=1)
|
||
|
x = self.conv2(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class SPPFLayer(nn.Layer):
|
||
|
""" Spatial Pyramid Pooling - Fast (SPPF) layer used in YOLOv5 by Glenn Jocher,
|
||
|
equivalent to SPP(k=(5, 9, 13))
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
ksize=5,
|
||
|
bias=False,
|
||
|
act='silu'):
|
||
|
super(SPPFLayer, self).__init__()
|
||
|
hidden_channels = in_channels // 2
|
||
|
self.conv1 = BaseConv(
|
||
|
in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act)
|
||
|
self.maxpooling = nn.MaxPool2D(
|
||
|
kernel_size=ksize, stride=1, padding=ksize // 2)
|
||
|
conv2_channels = hidden_channels * 4
|
||
|
self.conv2 = BaseConv(
|
||
|
conv2_channels, out_channels, ksize=1, stride=1, bias=bias, act=act)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv1(x)
|
||
|
y1 = self.maxpooling(x)
|
||
|
y2 = self.maxpooling(y1)
|
||
|
y3 = self.maxpooling(y2)
|
||
|
concats = paddle.concat([x, y1, y2, y3], axis=1)
|
||
|
out = self.conv2(concats)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class CSPLayer(nn.Layer):
|
||
|
"""CSP (Cross Stage Partial) layer with 3 convs, named C3 in YOLOv5"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
num_blocks=1,
|
||
|
shortcut=True,
|
||
|
expansion=0.5,
|
||
|
depthwise=False,
|
||
|
bias=False,
|
||
|
act="silu"):
|
||
|
super(CSPLayer, self).__init__()
|
||
|
hidden_channels = int(out_channels * expansion)
|
||
|
self.conv1 = BaseConv(
|
||
|
in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act)
|
||
|
self.conv2 = BaseConv(
|
||
|
in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act)
|
||
|
self.bottlenecks = nn.Sequential(*[
|
||
|
BottleNeck(
|
||
|
hidden_channels,
|
||
|
hidden_channels,
|
||
|
shortcut=shortcut,
|
||
|
expansion=1.0,
|
||
|
depthwise=depthwise,
|
||
|
bias=bias,
|
||
|
act=act) for _ in range(num_blocks)
|
||
|
])
|
||
|
self.conv3 = BaseConv(
|
||
|
hidden_channels * 2,
|
||
|
out_channels,
|
||
|
ksize=1,
|
||
|
stride=1,
|
||
|
bias=bias,
|
||
|
act=act)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x_1 = self.conv1(x)
|
||
|
x_1 = self.bottlenecks(x_1)
|
||
|
x_2 = self.conv2(x)
|
||
|
x = paddle.concat([x_1, x_2], axis=1)
|
||
|
x = self.conv3(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class CSPDarkNet(nn.Layer):
|
||
|
"""
|
||
|
CSPDarkNet backbone.
|
||
|
Args:
|
||
|
arch (str): Architecture of CSPDarkNet, from {P5, P6, X}, default as X,
|
||
|
and 'X' means used in YOLOX, 'P5/P6' means used in YOLOv5.
|
||
|
depth_mult (float): Depth multiplier, multiply number of channels in
|
||
|
each layer, default as 1.0.
|
||
|
width_mult (float): Width multiplier, multiply number of blocks in
|
||
|
CSPLayer, default as 1.0.
|
||
|
depthwise (bool): Whether to use depth-wise conv layer.
|
||
|
act (str): Activation function type, default as 'silu'.
|
||
|
return_idx (list): Index of stages whose feature maps are returned.
|
||
|
"""
|
||
|
|
||
|
__shared__ = ['depth_mult', 'width_mult', 'act', 'trt']
|
||
|
|
||
|
# in_channels, out_channels, num_blocks, add_shortcut, use_spp(use_sppf)
|
||
|
# 'X' means setting used in YOLOX, 'P5/P6' means setting used in YOLOv5.
|
||
|
arch_settings = {
|
||
|
'X': [[64, 128, 3, True, False], [128, 256, 9, True, False],
|
||
|
[256, 512, 9, True, False], [512, 1024, 3, False, True]],
|
||
|
'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False],
|
||
|
[256, 512, 9, True, False], [512, 1024, 3, True, True]],
|
||
|
'P6': [[64, 128, 3, True, False], [128, 256, 6, True, False],
|
||
|
[256, 512, 9, True, False], [512, 768, 3, True, False],
|
||
|
[768, 1024, 3, True, True]],
|
||
|
}
|
||
|
|
||
|
def __init__(self,
|
||
|
arch='X',
|
||
|
depth_mult=1.0,
|
||
|
width_mult=1.0,
|
||
|
depthwise=False,
|
||
|
act='silu',
|
||
|
trt=False,
|
||
|
return_idx=[2, 3, 4]):
|
||
|
super(CSPDarkNet, self).__init__()
|
||
|
self.arch = arch
|
||
|
self.return_idx = return_idx
|
||
|
Conv = DWConv if depthwise else BaseConv
|
||
|
arch_setting = self.arch_settings[arch]
|
||
|
base_channels = int(arch_setting[0][0] * width_mult)
|
||
|
|
||
|
# Note: differences between the latest YOLOv5 and the original YOLOX
|
||
|
# 1. self.stem, use SPPF(in YOLOv5) or SPP(in YOLOX)
|
||
|
# 2. use SPPF(in YOLOv5) or SPP(in YOLOX)
|
||
|
# 3. put SPPF before(YOLOv5) or SPP after(YOLOX) the last cspdark block's CSPLayer
|
||
|
# 4. whether SPPF(SPP)'CSPLayer add shortcut, True in YOLOv5, False in YOLOX
|
||
|
if arch in ['P5', 'P6']:
|
||
|
# in the latest YOLOv5, use Conv stem, and SPPF (fast, only single spp kernal size)
|
||
|
self.stem = Conv(
|
||
|
3, base_channels, ksize=6, stride=2, bias=False, act=act)
|
||
|
spp_kernal_sizes = 5
|
||
|
elif arch in ['X']:
|
||
|
# in the original YOLOX, use Focus stem, and SPP (three spp kernal sizes)
|
||
|
self.stem = Focus(
|
||
|
3, base_channels, ksize=3, stride=1, bias=False, act=act)
|
||
|
spp_kernal_sizes = (5, 9, 13)
|
||
|
else:
|
||
|
raise AttributeError("Unsupported arch type: {}".format(arch))
|
||
|
|
||
|
_out_channels = [base_channels]
|
||
|
layers_num = 1
|
||
|
self.csp_dark_blocks = []
|
||
|
|
||
|
for i, (in_channels, out_channels, num_blocks, shortcut,
|
||
|
use_spp) in enumerate(arch_setting):
|
||
|
in_channels = int(in_channels * width_mult)
|
||
|
out_channels = int(out_channels * width_mult)
|
||
|
_out_channels.append(out_channels)
|
||
|
num_blocks = max(round(num_blocks * depth_mult), 1)
|
||
|
stage = []
|
||
|
|
||
|
conv_layer = self.add_sublayer(
|
||
|
'layers{}.stage{}.conv_layer'.format(layers_num, i + 1),
|
||
|
Conv(
|
||
|
in_channels, out_channels, 3, 2, bias=False, act=act))
|
||
|
stage.append(conv_layer)
|
||
|
layers_num += 1
|
||
|
|
||
|
if use_spp and arch in ['X']:
|
||
|
# in YOLOX use SPPLayer
|
||
|
spp_layer = self.add_sublayer(
|
||
|
'layers{}.stage{}.spp_layer'.format(layers_num, i + 1),
|
||
|
SPPLayer(
|
||
|
out_channels,
|
||
|
out_channels,
|
||
|
kernel_sizes=spp_kernal_sizes,
|
||
|
bias=False,
|
||
|
act=act))
|
||
|
stage.append(spp_layer)
|
||
|
layers_num += 1
|
||
|
|
||
|
csp_layer = self.add_sublayer(
|
||
|
'layers{}.stage{}.csp_layer'.format(layers_num, i + 1),
|
||
|
CSPLayer(
|
||
|
out_channels,
|
||
|
out_channels,
|
||
|
num_blocks=num_blocks,
|
||
|
shortcut=shortcut,
|
||
|
depthwise=depthwise,
|
||
|
bias=False,
|
||
|
act=act))
|
||
|
stage.append(csp_layer)
|
||
|
layers_num += 1
|
||
|
|
||
|
if use_spp and arch in ['P5', 'P6']:
|
||
|
# in latest YOLOv5 use SPPFLayer instead of SPPLayer
|
||
|
sppf_layer = self.add_sublayer(
|
||
|
'layers{}.stage{}.sppf_layer'.format(layers_num, i + 1),
|
||
|
SPPFLayer(
|
||
|
out_channels,
|
||
|
out_channels,
|
||
|
ksize=5,
|
||
|
bias=False,
|
||
|
act=act))
|
||
|
stage.append(sppf_layer)
|
||
|
layers_num += 1
|
||
|
|
||
|
self.csp_dark_blocks.append(nn.Sequential(*stage))
|
||
|
|
||
|
self._out_channels = [_out_channels[i] for i in self.return_idx]
|
||
|
self.strides = [[2, 4, 8, 16, 32, 64][i] for i in self.return_idx]
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
x = inputs['image']
|
||
|
outputs = []
|
||
|
x = self.stem(x)
|
||
|
for i, layer in enumerate(self.csp_dark_blocks):
|
||
|
x = layer(x)
|
||
|
if i + 1 in self.return_idx:
|
||
|
outputs.append(x)
|
||
|
return outputs
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [
|
||
|
ShapeSpec(
|
||
|
channels=c, stride=s)
|
||
|
for c, s in zip(self._out_channels, self.strides)
|
||
|
]
|