# LoFTR: Detector-Free Local Feature Matching with Transformers ### [Project Page](https://zju3dv.github.io/loftr) | [Paper](https://arxiv.org/pdf/2104.00680.pdf)
> LoFTR: Detector-Free Local Feature Matching with Transformers > [Jiaming Sun](https://jiamingsun.ml)\*, [Zehong Shen](https://zehongs.github.io/)\*, [Yu'ang Wang](https://github.com/angshine)\*, [Hujun Bao](http://www.cad.zju.edu.cn/home/bao/), [Xiaowei Zhou](http://www.cad.zju.edu.cn/home/xzhou/) > CVPR 2021 ![demo_vid](assets/loftr-github-demo.gif) ## TODO List and ETA - [x] Inference code and pretrained models (DS and OT) (2021-4-7) - [x] Code for reproducing the test-set results (2021-4-7) - [x] Webcam demo to reproduce the result shown in the GIF above (2021-4-13) - [x] Training code and training data preparation (expected 2021-6-10) The entire codebase for data pre-processing, training and validation is under major refactoring and will be released around June. Please subscribe to [this discussion thread](https://github.com/zju3dv/LoFTR/discussions/2) if you wish to be notified of the code release. In the meanwhile, discussions about the paper are welcomed in the [discussion panel](https://github.com/zju3dv/LoFTR/discussions). ## Colab demo Want to run LoFTR with custom image pairs without configuring your own GPU environment? Try the Colab demo: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1BgNIOjFHauFoNB95LGesHBIjioX74USW?usp=sharing) ## Installation ```shell # For full pytorch-lightning trainer features (recommended) conda env create -f environment.yaml conda activate loftr # For the LoFTR matcher only pip install torch einops yacs kornia ``` We provide the [download link](https://drive.google.com/drive/folders/1DOcOPZb3-5cWxLqn256AhwUVjBPifhuf?usp=sharing) to - the scannet-1500-testset (~1GB). - the megadepth-1500-testset (~600MB). - 4 pretrained models of indoor-ds, indoor-ot, outdoor-ds and outdoor-ot (each ~45MB). By now, the environment is all set and the LoFTR-DS model is ready to go! If you want to run LoFTR-OT, some extra steps are needed:
[Requirements for LoFTR-OT] We use the code from [SuperGluePretrainedNetwork](https://github.com/magicleap/SuperGluePretrainedNetwork) for optimal transport. However, we can't provide the code directly due its strict LICENSE requirements. We recommend downloading it with the following command instead. ```shell cd src/loftr/utils wget https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/master/models/superglue.py ```
## Run LoFTR demos ### Match image pairs with LoFTR
[code snippets] ```python from src.loftr import LoFTR, default_cfg # Initialize LoFTR matcher = LoFTR(config=default_cfg) matcher.load_state_dict(torch.load("weights/indoor_ds.ckpt")['state_dict']) matcher = matcher.eval().cuda() # Inference with torch.no_grad(): matcher(batch) # batch = {'image0': img0, 'image1': img1} mkpts0 = batch['mkpts0_f'].cpu().numpy() mkpts1 = batch['mkpts1_f'].cpu().numpy() ```
An example is given in `notebooks/demo_single_pair.ipynb`. ### Online demo Run the online demo with a webcam or video to reproduce the result shown in the GIF above. ```bash cd demo ./run_demo.sh ```
[run_demo.sh] ```bash #!/bin/bash set -e # set -x if [ ! -f utils.py ]; then echo "Downloading utils.py from the SuperGlue repo." echo "We cannot provide this file directly due to its strict licence." wget https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/master/models/utils.py fi # Use webcam 0 as input source. input=0 # or use a pre-recorded video given the path. # input=/home/sunjiaming/Downloads/scannet_test/$scene_name.mp4 # Toggle indoor/outdoor model here. model_ckpt=../weights/indoor_ds.ckpt # model_ckpt=../weights/outdoor_ds.ckpt # Optionally assign the GPU ID. # export CUDA_VISIBLE_DEVICES=0 echo "Running LoFTR demo.." eval "$(conda shell.bash hook)" conda activate loftr python demo_loftr.py --weight $model_ckpt --input $input # To save the input video and output match visualizations. # python demo_loftr.py --weight $model_ckpt --input $input --save_video --save_input # Running on remote GPU servers with no GUI. # Save images first. # python demo_loftr.py --weight $model_ckpt --input $input --no_display --output_dir="./demo_images/" # Then convert them to a video. # ffmpeg -framerate 15 -pattern_type glob -i '*.png' -c:v libx264 -r 30 -pix_fmt yuv420p out.mp4 ```
### Reproduce the testing results with pytorch-lightning You need to setup the testing subsets of ScanNet and MegaDepth first. We create symlinks from the previously downloaded datasets to `data/{{dataset}}/test`. ```shell # set up symlinks ln -s /path/to/scannet-1500-testset/* /path/to/LoFTR/data/scannet/test ln -s /path/to/megadepth-1500-testset/* /path/to/LoFTR/data/megadepth/test ``` ```shell conda activate loftr # with shell script bash ./scripts/reproduce_test/indoor_ds.sh # or python test.py configs/data/scannet_test_1500.py configs/loftr/loftr_ds.py --ckpt_path weights/indoor_ds.ckpt --profiler_name inference --gpus=1 --accelerator="ddp" ``` For visualizing the results, please refer to `notebooks/visualize_dump_results.ipynb`.
## Training See [Training LoFTR](./docs/TRAINING.md) for more details. ## Citation If you find this code useful for your research, please use the following BibTeX entry. ```bibtex @article{sun2021loftr, title={{LoFTR}: Detector-Free Local Feature Matching with Transformers}, author={Sun, Jiaming and Shen, Zehong and Wang, Yuang and Bao, Hujun and Zhou, Xiaowei}, journal={{CVPR}}, year={2021} } ``` ## Copyright This work is affiliated with ZJU-SenseTime Joint Lab of 3D Vision, and its intellectual property belongs to SenseTime Group Ltd. ``` Copyright SenseTime. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ```