You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
241 lines
9.3 KiB
241 lines
9.3 KiB
4 years ago
|
front_matter = """
|
||
|
------------------------------------------------------------------------
|
||
|
Online demo for [LoFTR](https://zju3dv.github.io/loftr/).
|
||
|
|
||
|
This demo is heavily inspired by [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork/).
|
||
|
We thank the authors for their execellent work.
|
||
|
------------------------------------------------------------------------
|
||
|
"""
|
||
|
|
||
|
import os
|
||
|
import argparse
|
||
|
from pathlib import Path
|
||
|
import cv2
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
import matplotlib.cm as cm
|
||
|
|
||
|
os.sys.path.append("../") # Add the project directory
|
||
|
from src.loftr import LoFTR, default_cfg
|
||
|
from src.config.default import get_cfg_defaults
|
||
|
try:
|
||
|
from demo.utils import (AverageTimer, VideoStreamer,
|
||
|
make_matching_plot_fast, make_matching_plot, frame2tensor)
|
||
|
except:
|
||
|
raise ImportError("This demo requires utils.py from SuperGlue, please use run_demo.sh to start this script.")
|
||
|
|
||
|
|
||
|
torch.set_grad_enabled(False)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description='LoFTR online demo',
|
||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||
|
parser.add_argument('--weight', type=str, help="Path to the checkpoint.")
|
||
|
parser.add_argument(
|
||
|
'--input', type=str, default='0',
|
||
|
help='ID of a USB webcam, URL of an IP camera, '
|
||
|
'or path to an image directory or movie file')
|
||
|
parser.add_argument(
|
||
|
'--output_dir', type=str, default=None,
|
||
|
help='Directory where to write output frames (If None, no output)')
|
||
|
parser.add_argument(
|
||
|
'--image_glob', type=str, nargs='+', default=['*.png', '*.jpg', '*.jpeg'],
|
||
|
help='Glob if a directory of images is specified')
|
||
|
parser.add_argument(
|
||
|
'--skip', type=int, default=1,
|
||
|
help='Images to skip if input is a movie or directory')
|
||
|
parser.add_argument(
|
||
|
'--max_length', type=int, default=1000000,
|
||
|
help='Maximum length if input is a movie or directory')
|
||
|
parser.add_argument(
|
||
|
'--resize', type=int, nargs='+', default=[640, 480],
|
||
|
help='Resize the input image before running inference. If two numbers, '
|
||
|
'resize to the exact dimensions, if one number, resize the max '
|
||
|
'dimension, if -1, do not resize')
|
||
|
parser.add_argument(
|
||
|
'--no_display', action='store_true',
|
||
|
help='Do not display images to screen. Useful if running remotely')
|
||
|
parser.add_argument(
|
||
|
'--save_video', action='store_true',
|
||
|
help='Save output (with match visualizations) to a video.')
|
||
|
parser.add_argument(
|
||
|
'--save_input', action='store_true',
|
||
|
help='Save the input images to a video (for gathering repeatable input source).')
|
||
|
parser.add_argument(
|
||
|
'--skip_frames', type=int, default=1,
|
||
|
help="Skip frames from webcam input.")
|
||
|
parser.add_argument(
|
||
|
'--top_k', type=int, default=2000, help="The max vis_range (please refer to the code).")
|
||
|
parser.add_argument(
|
||
|
'--bottom_k', type=int, default=0, help="The min vis_range (please refer to the code).")
|
||
|
|
||
|
opt = parser.parse_args()
|
||
|
print(front_matter)
|
||
|
parser.print_help()
|
||
|
|
||
|
if len(opt.resize) == 2 and opt.resize[1] == -1:
|
||
|
opt.resize = opt.resize[0:1]
|
||
|
if len(opt.resize) == 2:
|
||
|
print('Will resize to {}x{} (WxH)'.format(
|
||
|
opt.resize[0], opt.resize[1]))
|
||
|
elif len(opt.resize) == 1 and opt.resize[0] > 0:
|
||
|
print('Will resize max dimension to {}'.format(opt.resize[0]))
|
||
|
elif len(opt.resize) == 1:
|
||
|
print('Will not resize images')
|
||
|
else:
|
||
|
raise ValueError('Cannot specify more than two integers for --resize')
|
||
|
|
||
|
if torch.cuda.is_available():
|
||
|
device = 'cuda'
|
||
|
else:
|
||
|
raise RuntimeError("GPU is required to run this demo.")
|
||
|
|
||
|
# Initialize LoFTR
|
||
|
matcher = LoFTR(config=default_cfg)
|
||
|
matcher.load_state_dict(torch.load(opt.weight)['state_dict'])
|
||
|
matcher = matcher.eval().to(device=device)
|
||
|
|
||
|
# Configure I/O
|
||
|
if opt.save_video:
|
||
|
print('Writing video to loftr-matches.mp4...')
|
||
|
writer = cv2.VideoWriter('loftr-matches.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 15, (640*2 + 10, 480))
|
||
|
if opt.save_input:
|
||
|
print('Writing video to demo-input.mp4...')
|
||
|
input_writer = cv2.VideoWriter('demo-input.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 15, (640, 480))
|
||
|
|
||
|
vs = VideoStreamer(opt.input, opt.resize, opt.skip,
|
||
|
opt.image_glob, opt.max_length)
|
||
|
frame, ret = vs.next_frame()
|
||
|
assert ret, 'Error when reading the first frame (try different --input?)'
|
||
|
|
||
|
frame_id = 0
|
||
|
last_image_id = 0
|
||
|
frame_tensor = frame2tensor(frame, device)
|
||
|
last_data = {'image0': frame_tensor}
|
||
|
last_frame = frame
|
||
|
|
||
|
if opt.output_dir is not None:
|
||
|
print('==> Will write outputs to {}'.format(opt.output_dir))
|
||
|
Path(opt.output_dir).mkdir(exist_ok=True)
|
||
|
|
||
|
# Create a window to display the demo.
|
||
|
if not opt.no_display:
|
||
|
window_name = 'LoFTR Matches'
|
||
|
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
|
||
|
cv2.resizeWindow(window_name, (640*2, 480))
|
||
|
else:
|
||
|
print('Skipping visualization, will not show a GUI.')
|
||
|
|
||
|
# Print the keyboard help menu.
|
||
|
print('==> Keyboard control:\n'
|
||
|
'\tn: select the current frame as the reference image (left)\n'
|
||
|
'\td/f: move the range of the matches (ranked by confidence) to visualize\n'
|
||
|
'\tc/v: increase/decrease the length of the visualization range (i.e., total number of matches) to show\n'
|
||
|
'\tq: quit')
|
||
|
|
||
|
timer = AverageTimer()
|
||
|
vis_range = [opt.bottom_k, opt.top_k]
|
||
|
|
||
|
while True:
|
||
|
frame_id += 1
|
||
|
frame, ret = vs.next_frame()
|
||
|
if frame_id % opt.skip_frames != 0:
|
||
|
# print("Skipping frame.")
|
||
|
continue
|
||
|
if opt.save_input:
|
||
|
inp = np.stack([frame]*3, -1)
|
||
|
inp_rgb = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
||
|
input_writer.write(inp_rgb)
|
||
|
if not ret:
|
||
|
print('Finished demo_loftr.py')
|
||
|
break
|
||
|
timer.update('data')
|
||
|
stem0, stem1 = last_image_id, vs.i - 1
|
||
|
|
||
|
frame_tensor = frame2tensor(frame, device)
|
||
|
last_data = {**last_data, 'image1': frame_tensor}
|
||
|
matcher(last_data)
|
||
|
|
||
|
total_n_matches = len(last_data['mkpts0_f'])
|
||
|
mkpts0 = last_data['mkpts0_f'].cpu().numpy()[vis_range[0]:vis_range[1]]
|
||
|
mkpts1 = last_data['mkpts1_f'].cpu().numpy()[vis_range[0]:vis_range[1]]
|
||
|
mconf = last_data['mconf'].cpu().numpy()[vis_range[0]:vis_range[1]]
|
||
|
|
||
|
# Normalize confidence.
|
||
|
if len(mconf) > 0:
|
||
|
conf_vis_min = 0.
|
||
|
conf_min = mconf.min()
|
||
|
conf_max = mconf.max()
|
||
|
mconf = (mconf - conf_vis_min) / (conf_max - conf_vis_min + 1e-5)
|
||
|
|
||
|
timer.update('forward')
|
||
|
alpha = 0
|
||
|
color = cm.jet(mconf, alpha=alpha)
|
||
|
|
||
|
text = [
|
||
|
f'LoFTR',
|
||
|
'# Matches (showing/total): {}/{}'.format(len(mkpts0), total_n_matches),
|
||
|
]
|
||
|
small_text = [
|
||
|
f'Showing matches from {vis_range[0]}:{vis_range[1]}',
|
||
|
f'Confidence Range: {conf_min:.2f}:{conf_max:.2f}',
|
||
|
'Image Pair: {:06}:{:06}'.format(stem0, stem1),
|
||
|
]
|
||
|
out = make_matching_plot_fast(
|
||
|
last_frame, frame, mkpts0, mkpts1, mkpts0, mkpts1, color, text,
|
||
|
path=None, show_keypoints=False, small_text=small_text)
|
||
|
|
||
|
# Save high quality png, optionally with dynamic alpha support (unreleased yet).
|
||
|
# save_path = 'demo_vid/{:06}'.format(frame_id)
|
||
|
# make_matching_plot(
|
||
|
# last_frame, frame, mkpts0, mkpts1, mkpts0, mkpts1, color, text,
|
||
|
# path=save_path, show_keypoints=opt.show_keypoints, small_text=small_text)
|
||
|
|
||
|
if not opt.no_display:
|
||
|
if opt.save_video:
|
||
|
writer.write(out)
|
||
|
cv2.imshow('LoFTR Matches', out)
|
||
|
key = chr(cv2.waitKey(1) & 0xFF)
|
||
|
if key == 'q':
|
||
|
if opt.save_video:
|
||
|
writer.release()
|
||
|
if opt.save_input:
|
||
|
input_writer.release()
|
||
|
vs.cleanup()
|
||
|
print('Exiting...')
|
||
|
break
|
||
|
elif key == 'n':
|
||
|
last_data['image0'] = frame_tensor
|
||
|
last_frame = frame
|
||
|
last_image_id = (vs.i - 1)
|
||
|
frame_id_left = frame_id
|
||
|
elif key in ['d', 'f']:
|
||
|
if key == 'd':
|
||
|
if vis_range[0] >= 0:
|
||
|
vis_range[0] -= 200
|
||
|
vis_range[1] -= 200
|
||
|
if key =='f':
|
||
|
vis_range[0] += 200
|
||
|
vis_range[1] += 200
|
||
|
print(f'\nChanged the vis_range to {vis_range[0]}:{vis_range[1]}')
|
||
|
elif key in ['c', 'v']:
|
||
|
if key == 'c':
|
||
|
vis_range[1] -= 50
|
||
|
if key =='v':
|
||
|
vis_range[1] += 50
|
||
|
print(f'\nChanged the vis_range[1] to {vis_range[1]}')
|
||
|
elif opt.output_dir is not None:
|
||
|
stem = 'matches_{:06}_{:06}'.format(stem0, stem1)
|
||
|
out_file = str(Path(opt.output_dir, stem + '.png'))
|
||
|
print('\nWriting image to {}'.format(out_file))
|
||
|
cv2.imwrite(out_file, out)
|
||
|
else:
|
||
|
raise ValueError("output_dir is required when no display is given.")
|
||
|
timer.update('viz')
|
||
|
timer.print()
|
||
|
|
||
|
|
||
|
cv2.destroyAllWindows()
|
||
|
vs.cleanup()
|