You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

241 lines
9.3 KiB

front_matter = """
------------------------------------------------------------------------
Online demo for [LoFTR](https://zju3dv.github.io/loftr/).
This demo is heavily inspired by [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork/).
We thank the authors for their execellent work.
------------------------------------------------------------------------
"""
import os
import argparse
from pathlib import Path
import cv2
import torch
import numpy as np
import matplotlib.cm as cm
os.sys.path.append("../") # Add the project directory
from src.loftr import LoFTR, default_cfg
from src.config.default import get_cfg_defaults
try:
from demo.utils import (AverageTimer, VideoStreamer,
make_matching_plot_fast, make_matching_plot, frame2tensor)
except:
raise ImportError("This demo requires utils.py from SuperGlue, please use run_demo.sh to start this script.")
torch.set_grad_enabled(False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='LoFTR online demo',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--weight', type=str, help="Path to the checkpoint.")
parser.add_argument(
'--input', type=str, default='0',
help='ID of a USB webcam, URL of an IP camera, '
'or path to an image directory or movie file')
parser.add_argument(
'--output_dir', type=str, default=None,
help='Directory where to write output frames (If None, no output)')
parser.add_argument(
'--image_glob', type=str, nargs='+', default=['*.png', '*.jpg', '*.jpeg'],
help='Glob if a directory of images is specified')
parser.add_argument(
'--skip', type=int, default=1,
help='Images to skip if input is a movie or directory')
parser.add_argument(
'--max_length', type=int, default=1000000,
help='Maximum length if input is a movie or directory')
parser.add_argument(
'--resize', type=int, nargs='+', default=[640, 480],
help='Resize the input image before running inference. If two numbers, '
'resize to the exact dimensions, if one number, resize the max '
'dimension, if -1, do not resize')
parser.add_argument(
'--no_display', action='store_true',
help='Do not display images to screen. Useful if running remotely')
parser.add_argument(
'--save_video', action='store_true',
help='Save output (with match visualizations) to a video.')
parser.add_argument(
'--save_input', action='store_true',
help='Save the input images to a video (for gathering repeatable input source).')
parser.add_argument(
'--skip_frames', type=int, default=1,
help="Skip frames from webcam input.")
parser.add_argument(
'--top_k', type=int, default=2000, help="The max vis_range (please refer to the code).")
parser.add_argument(
'--bottom_k', type=int, default=0, help="The min vis_range (please refer to the code).")
opt = parser.parse_args()
print(front_matter)
parser.print_help()
if len(opt.resize) == 2 and opt.resize[1] == -1:
opt.resize = opt.resize[0:1]
if len(opt.resize) == 2:
print('Will resize to {}x{} (WxH)'.format(
opt.resize[0], opt.resize[1]))
elif len(opt.resize) == 1 and opt.resize[0] > 0:
print('Will resize max dimension to {}'.format(opt.resize[0]))
elif len(opt.resize) == 1:
print('Will not resize images')
else:
raise ValueError('Cannot specify more than two integers for --resize')
if torch.cuda.is_available():
device = 'cuda'
else:
raise RuntimeError("GPU is required to run this demo.")
# Initialize LoFTR
matcher = LoFTR(config=default_cfg)
matcher.load_state_dict(torch.load(opt.weight)['state_dict'])
matcher = matcher.eval().to(device=device)
# Configure I/O
if opt.save_video:
print('Writing video to loftr-matches.mp4...')
writer = cv2.VideoWriter('loftr-matches.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 15, (640*2 + 10, 480))
if opt.save_input:
print('Writing video to demo-input.mp4...')
input_writer = cv2.VideoWriter('demo-input.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 15, (640, 480))
vs = VideoStreamer(opt.input, opt.resize, opt.skip,
opt.image_glob, opt.max_length)
frame, ret = vs.next_frame()
assert ret, 'Error when reading the first frame (try different --input?)'
frame_id = 0
last_image_id = 0
frame_tensor = frame2tensor(frame, device)
last_data = {'image0': frame_tensor}
last_frame = frame
if opt.output_dir is not None:
print('==> Will write outputs to {}'.format(opt.output_dir))
Path(opt.output_dir).mkdir(exist_ok=True)
# Create a window to display the demo.
if not opt.no_display:
window_name = 'LoFTR Matches'
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.resizeWindow(window_name, (640*2, 480))
else:
print('Skipping visualization, will not show a GUI.')
# Print the keyboard help menu.
print('==> Keyboard control:\n'
'\tn: select the current frame as the reference image (left)\n'
'\td/f: move the range of the matches (ranked by confidence) to visualize\n'
'\tc/v: increase/decrease the length of the visualization range (i.e., total number of matches) to show\n'
'\tq: quit')
timer = AverageTimer()
vis_range = [opt.bottom_k, opt.top_k]
while True:
frame_id += 1
frame, ret = vs.next_frame()
if frame_id % opt.skip_frames != 0:
# print("Skipping frame.")
continue
if opt.save_input:
inp = np.stack([frame]*3, -1)
inp_rgb = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
input_writer.write(inp_rgb)
if not ret:
print('Finished demo_loftr.py')
break
timer.update('data')
stem0, stem1 = last_image_id, vs.i - 1
frame_tensor = frame2tensor(frame, device)
last_data = {**last_data, 'image1': frame_tensor}
matcher(last_data)
total_n_matches = len(last_data['mkpts0_f'])
mkpts0 = last_data['mkpts0_f'].cpu().numpy()[vis_range[0]:vis_range[1]]
mkpts1 = last_data['mkpts1_f'].cpu().numpy()[vis_range[0]:vis_range[1]]
mconf = last_data['mconf'].cpu().numpy()[vis_range[0]:vis_range[1]]
# Normalize confidence.
if len(mconf) > 0:
conf_vis_min = 0.
conf_min = mconf.min()
conf_max = mconf.max()
mconf = (mconf - conf_vis_min) / (conf_max - conf_vis_min + 1e-5)
timer.update('forward')
alpha = 0
color = cm.jet(mconf, alpha=alpha)
text = [
f'LoFTR',
'# Matches (showing/total): {}/{}'.format(len(mkpts0), total_n_matches),
]
small_text = [
f'Showing matches from {vis_range[0]}:{vis_range[1]}',
f'Confidence Range: {conf_min:.2f}:{conf_max:.2f}',
'Image Pair: {:06}:{:06}'.format(stem0, stem1),
]
out = make_matching_plot_fast(
last_frame, frame, mkpts0, mkpts1, mkpts0, mkpts1, color, text,
path=None, show_keypoints=False, small_text=small_text)
# Save high quality png, optionally with dynamic alpha support (unreleased yet).
# save_path = 'demo_vid/{:06}'.format(frame_id)
# make_matching_plot(
# last_frame, frame, mkpts0, mkpts1, mkpts0, mkpts1, color, text,
# path=save_path, show_keypoints=opt.show_keypoints, small_text=small_text)
if not opt.no_display:
if opt.save_video:
writer.write(out)
cv2.imshow('LoFTR Matches', out)
key = chr(cv2.waitKey(1) & 0xFF)
if key == 'q':
if opt.save_video:
writer.release()
if opt.save_input:
input_writer.release()
vs.cleanup()
print('Exiting...')
break
elif key == 'n':
last_data['image0'] = frame_tensor
last_frame = frame
last_image_id = (vs.i - 1)
frame_id_left = frame_id
elif key in ['d', 'f']:
if key == 'd':
if vis_range[0] >= 0:
vis_range[0] -= 200
vis_range[1] -= 200
if key =='f':
vis_range[0] += 200
vis_range[1] += 200
print(f'\nChanged the vis_range to {vis_range[0]}:{vis_range[1]}')
elif key in ['c', 'v']:
if key == 'c':
vis_range[1] -= 50
if key =='v':
vis_range[1] += 50
print(f'\nChanged the vis_range[1] to {vis_range[1]}')
elif opt.output_dir is not None:
stem = 'matches_{:06}_{:06}'.format(stem0, stem1)
out_file = str(Path(opt.output_dir, stem + '.png'))
print('\nWriting image to {}'.format(out_file))
cv2.imwrite(out_file, out)
else:
raise ValueError("output_dir is required when no display is given.")
timer.update('viz')
timer.print()
cv2.destroyAllWindows()
vs.cleanup()