You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

204 lines
1.6 MiB

{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.8"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python378jvsc74a57bd065d19ceb1c5e26d1d1e4e93c9824aa3d4633a56cbb655ff57f645571fa154c9a",
"display_name": "Python 3.7.8 64-bit ('loftr': conda)"
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"source": [
"# Demo LoFTR-DS on a single pair of images\n",
"\n",
"This notebook shows how to use the loftr matcher with default config(dual-softmax) and the pretrained weights."
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.chdir(\"..\")\n",
"import torch\n",
"import cv2\n",
"import numpy as np\n",
"import matplotlib.cm as cm\n",
"from src.utils.plotting import make_matching_figure"
]
},
{
"source": [
"## Indoor Example"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from src.loftr import LoFTR, default_cfg\n",
"\n",
"# The default config uses dual-softmax.\n",
"# The outdoor and indoor models share the same config.\n",
"# You can change the default values like thr and coarse_match_type.\n",
"matcher = LoFTR(config=default_cfg)\n",
"matcher.load_state_dict(torch.load(\"weights/indoor_ds.ckpt\")['state_dict'])\n",
"matcher = matcher.eval().cuda()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Load example images\n",
"img0_pth = \"assets/scannet_sample_images/scene0711_00_frame-001680.jpg\"\n",
"img1_pth = \"assets/scannet_sample_images/scene0711_00_frame-001995.jpg\"\n",
"img0_raw = cv2.imread(img0_pth, cv2.IMREAD_GRAYSCALE)\n",
"img1_raw = cv2.imread(img1_pth, cv2.IMREAD_GRAYSCALE)\n",
"img0_raw = cv2.resize(img0_raw, (640, 480))\n",
"img1_raw = cv2.resize(img1_raw, (640, 480))\n",
"\n",
"img0 = torch.from_numpy(img0_raw)[None][None].cuda() / 255.\n",
"img1 = torch.from_numpy(img1_raw)[None][None].cuda() / 255.\n",
"batch = {'image0': img0, 'image1': img1}\n",
"\n",
"# Inference with LoFTR and get prediction\n",
"with torch.no_grad():\n",
" matcher(batch)\n",
" mkpts0 = batch['mkpts0_f'].cpu().numpy()\n",
" mkpts1 = batch['mkpts1_f'].cpu().numpy()\n",
" mconf = batch['mconf'].cpu().numpy()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": "<Figure size 750x450 with 2 Axes>",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"273.15pt\" version=\"1.1\" viewBox=\"0 0 714.4 273.15\" width=\"714.4pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-05-26T10:12:11.412281</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.3, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 273.15 \nL 714.4 273.15 \nL 714.4 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 7.2 265.95 \nL 352.2 265.95 \nL 352.2 7.2 \nL 7.2 7.2 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#pb2b2e353df)\">\n <image height=\"259.2\" id=\"imagea422b05a43\" transform=\"scale(1 -1)translate(0 -259.2)\" width=\"345.6\" x=\"7.2\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAWgAAAEOCAYAAACkSI2SAAEAAElEQVR4nOy9aZNkyXEdenKp3NfKWnvvngWDGQwwwBAgFpKiJDPyo8zEL/p5NP0BSabNSJFmogSjSJEPIEiCAGYGnKWnt9orMyv3ynwf6p3oc708bmZVdw8GfAyzssy6eW/cWI8f9/DwyABYbG5uIpfL4fT0FKPRCEyLxQIAkMlkLl2zKZPJRH/75/TP6Z/TP6d/TldP+Ww2i9///d9HrVZDv9/HZDLBYrHAZDLBZDLBbDbDZDLB2dkZjo6OMJvNMJvNMJ1Ow/fz83PM53Ocn5/j/PzcfRFB3oL4qwL1fxYWScG6yr1sM227VfP4p9beXr11DGcyGWSzWeTzeUynU8zn80ttsAqxib1rWWIZ0kiUnXPe///U+m1tbQ2NRgPdbjeBRS+jnplMZmlf2bmTzWbdfLQPcrlc6E8mYmyeN7VaLdTrdcxmM8zn83DDdDrFZDLBYDDAxsYGBoMBxuMxxuNxuGc8HmM0GmE4HIbnma8WihXg77ZCLzu9jLwXi4ULWGmD3F67ykSI5ed9XzW/fD6PbDa7tAzsO60bn81kMol+03JSMK9Sx+uAEcvEZ+1EsX103cR87XtyuRxyuVyYbLlcDrPZDIvFAmtra2Hc85nrJLYx66llABBIEJO2x1UA2f4fE8pa91KphHq9jlqthlKphFKphGKxiFqthnq9jlwuh263i4cPH+Kjjz7CZDJx8/T+98Y265nNZpHL5ZDP57G2toZarYZ79+7hwYMHaDQaqNfr6HQ62N7exnQ6xZMnT/Dxxx/j//l//h/84he/CGNy2fhYdX5eB6CvOx4AXAD0YrFAv99HqVQKE4GsmINiOBxibW0N9Xodo9EIg8EAo9EI5+fnmE6nGA6HGI1G6Pf7GI1GGI1GiY7XgQUgARYvUoEvImmD2wF1nXxirMrTMLxBvMp77KBXcPHexU/2Ez8VmJQNeMJWv1umad97lfIvFotLwoXlsc+tktLa05aVAFEoFEJb3Lx5E6VSCU+fPsXR0RHG4zEWiwVyuVz0ncvq7QkG7/dVGWFsrHljT8eFCgfeS4AslUqo1WqoVquoVCoBnDudDgqFAgaDAQqFAvb29nB6eurW0dOevf7gmMtms0EgtFotvPPOO3jzzTexu7uLVquF3d1d3Lp1C9PpFJ988gkeP36Mn/zkJ/jlL3+ZGIsvYx6tMlf100tpGlWMcOTZIIVCIdygJovpdIpcLodisYjZbIZisYhyuYzhcBjMHJVKBWdnZ1hbWwsATeZ9fn4eAN8rkDeJPZC6Ljt7mQz9RYTJMim97LdV3+1NOA88deACuMSOY3XwymMBwWOCtj6xFOvr6wCy90wM/LxnCdKZTAbr6+t477330Ol00Ov10Gq18OTJEzx9+hS9Xi+M71jZl5mNFBi9OZHNZl0zyir19q6llYH1YDnm83mY6wACNkwmE4xGowCijUYD6+vrOD09XakMvGbHDwXj2toaSqUSNjc38Y1vfAOvvfYaNjc30Wq1cPPmTdy4cQOj0Qg///nP8aMf/Qj/9b/+V/zyl78M2s11yc6yNl7Wl2nguyx/+1seuGiQQqEQJmk+n8d8Psd8Psfa2lowdZyfnwcgH41GwT49Ho9DJ41GI4zH44Tpg5/M0wMFrciLsFRP9eP3V8XWrwJCLyIw0jpaB3maMIi1Q+z+tIm2qinGU6VXAeFVyxNLq7S1bTf7rsVigWq1iu9973t44403cHp6ivl8jkKhgGaziU6ng0ePHuHw8BCDwSCAmFeGtDZWYer1pZ0rLzvFxhbNnTQXKHE7Pz8P8zqXy6FSqWBjYwOffvrpyoLE3pfNZlEsFpHP51EoFHD79m18/etfx+3bt7G5uYkbN27gxo0b6HQ62Nvbw4cffoi/+Iu/wB/90R/h8ePHUSGmpg41J6WlWJ/E2kzb7bqJ76PAz+uPqsLmcjmcn5+HawRtPkxGTaZcLBZRqVQCGBO4aZvmNV1cVGZt2dd1Umzyv0wW/WVLy4A1jQ17oOnZ0F5Uc7BlfRXCKy2vqwC/Vf1LpRK+9a1v4ebNm9jf30e/30+o/Zubm0H9f/r0KU5PTzGdTgEgYf7hZ2x82+v2+6papG2DtLqvSloIyOPxGJPJBGtra4FszedzTCYT1Go1FItFNJtNFAoFjMfjS/XQZIGOmLO2toZCoYB6vY7XXnsN7777Lra3t9HpdHDjxg3cuXMH5XIZjx49wgcffID/9b/+F/70T/8Uh4eHQYB448ybD6tiTYyQrPr7KvnbPBImDtp7NOnCEFcZ2SEEaHbcZDJBPp8PoEsPEJo7CM78rsyaNrz5fB5Vw7yBdJXGeFXMOZZ3Wtk8le6qbPcqZUszM+ik99jwsncru7hKWV9ECL+q5DGkXC6Hd955B++88w6m0yn6/T6m0ylGo1Fgeo1GIyxYVSoVPHz4EIeHh2GhjHmmtY8nGLVMWrZVgdoKBS9dZWyptlwul8MaFed8JpMJ7VGv18O89saG
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAEcCAYAAACVsUECAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAuJAAALiQE3ycutAAEAAElEQVR4nOz9efQsx3XfCX4it9qrfuvb8bDjEQA3ACQFEhQJkqKs3RLpddwaHVu2j+32Mmeme9zjY0/b7rGP7fb0eGS3zmxSex9btqnd0lAmKVKECHARSRAgduDt7/d+e+1ZucX8kRX5i4pfZFU9EJLlmXfPqcotMuLGduN7b9yIFFJKbtNtuk236Tbdptt0m27TbbpNvz/I+c/NwG26TbfpNt2m23SbbtNtuk236YhuA/TbdJtu0226TbfpNt2m23Sbfh/RbYB+m27TbbpNt+k23abbdJtu0+8jug3Qb9Ntuk236Tbdptt0m27Tbfp9RLcB+m26TbfpNt2m23SbbtNtuk2/j+g2QL9Nt+k23abbdJtu0226Tbfp9xF58x46jiOfeOIJTp48SRzHuK6L4zgIIXAcB9d1ATg4OEBt1yilxHXdIqy6Pjg4YHd3FyEEUkqEEEU66to8HhwckKZpEdZ8r4zKto7U45lMJhweHpaG/f1Kq6urBEFQXAship9eB6qOVBh1X78GyLKseN+8VnGqe6ru0zRFSllcSylJ0xTHcYo09brKsowsy/A8DyFEce26bnGt5yVNU4AiPv1axafSB4o2otqbmR89rCoDFVY9U+fmM70czHI241zUNlX4MlLvL9PG32qax5vZft544w3iOP494eutorW1Nc6cOfO7Fv+pU6doNBrH7qu+EccxURQxHo/p9/v0er2ZNieEwPd9KpUKQoji+JGPfITv+Z7voVKpcHBwwN7eHl/84hf5V//qX5Fl2VINxXVd+RM/8RO87W1vYzKZFPdVvbquS5qmXLp0iSiKZp6p/qna/fb2NltbW8Bsf7SRer67u1saRpe/y7b7OI7p9/tMJpNCPv2XRqdOnSrq+P9XyHGcmbrQZUqWZQvby62mY8osW7y3mqaZB9u9RXL895JseGpZunz58n9xcrzT6XDy5EnrM1VH30n9nDhxgnq9bsWFtjIWQvDII4+wuro6c8+Uaw8//DDtdhs4knm/+qu/yj/4B/9grhyfC9CV8Gs2m0WmPc/D87wZEH7u3LkCTLmuWwAx9Y66pxecDgIVuNMLwHVdDg8PC/BlA0k2kK8AmVmYeqFlWcZkMqHb7ZKmKZPJhH6/TxiGVKtV1tfX8X2/CBtFEUmSkCRJAe51cJimaVEuUkp835/hQa8sNdjBcZCoA2ql/KhwSph3Op2CNzWoq/JW91Savu/PKFVJkjCZTAiCoIjj8PAQz/OKOh4OhyRJQhAE1Go14jhmOBziOA7NZhPP84rBsdVqUalUGI/HDIdDfN+n0WggpSRJkuJ8OBwyHA5pNBo0Gg0GgwHj8ZiVlRUAxuMxlUqFIAhwHIfRaESWZdTrdSqVCsPhkDRNqdfrOI7DeDwmiqKiI3W7XSqVCo1Gg8lkguu6VKtVhBBMJhPCMCzyotqw7/vH4g3DEIBGo1G0i2q1iud5xHFcvKfq0ff9oq6VImoCeNW+oygq+oHZZlVfcRyniNOmXKn+aAqPMuGs9zEzrH7fPOpp64qPouvXr5MkSRHGFIjmtS0tG982wWqWg+2+ra+b151OhxMnThyL/62i9fV1qtXqsftxHDMej+n1emxvb3P58mWef/55nnvuOV599VWGwyGu6+L7ftHnKpVKcXzve9/Lu9/9boIgoNfr0e12uXLlyi3xJqUkjmNarRatVqtUmT158uSxutIVaP1emRJvk8/dbncG5JvKs60d6ue6EpOmKTdv3uSzn/0sL730UhGP3i8WtQez/+jyV/Vhx3HwPK+QlZ7nUalUiqPqo0EQzCg6qh6VPFPjgpLRKr6TJ09Sr9eLcVTJfN3oYfL/nQAP21ip31/GqFVWrmUA0YzbNHAsa9iw8Wca83SygWldGVZpmmO0TZboYW15U2mUlcE8PlU889rnrQJv1X5UmrZ0XddFSsnW1hZJkhxrG2W0aJyx3Z9Xx7bxyVYnOrVaLdbW1o7xZKsfXTkzz219SQjB6upqIcf1MlyUzzJ+TdKVvY2NjblhYQFAVxEq4KSEkmoESrgo8K0EjAIhpmCxdYIyrUdKycrKygyg1a22usDXeVUFqncMRXqBZ1nGxsYGSZIQhiHdbpfBYECtVmNjY4NqtVoUZhRFTCaTwpIbRRGj0QjHcQrgrgSzEtI6v+odswJ93y+AswKVurBW8QBUKpWZMlJxqUFDt1K7rkuWZYRhODOYZFlGv98nTdMZoK/AdavVol6v0+v1CrANRx263W4XfERRRKvVolqtUq/XCzBdqVQKi2GtVivaRbVapVarFSA/CAJWVlbwfZ+DgwMcx6HT6SClLBSdVqtV5AegXq8XwDqO44K/arVapN3r9QpA5nkeo9EIgCAICrCkFIUwDBkMBtTrdZrNZvG8Vqvh+z5RFBVKkGpfpiKl14VuzdPboVLg0jQt6le9rw/q6qj6m0pTgQ9T4JYN5IvA7DxAbh51RVG157Nnz1rj1u+ZQHweCLNdq3tmOejx68+Xjef3krIsI0kS0jQlSRLG4zGDwYDhcMhoNJqxXikQp9qXlJJOp8Mdd9yB7/tF/9bl662QDsr1MjVnikxQbhuclpl11ONaXV09BlR0UG/O4s1rx0pxVuBWxadknj5GmPzovJcBLpXvLMuKtHTwrPqm53mF7NMBvKrzyWRSKNuqDylZrWRRtVotfgrQqzGgWq0W8erjrZm3ZUGuCRLLwtvGS738b4UWWdTnxbvI4j0PDOmYwQZ+bYBb0bKAWLfi28blW+HX1lb1WeUyvlS7MvOr93X9mXqu+s2pU6eOGT1t7ck8t41BNv70+ldp6mBZb8tldbKozGxjoG0MMNtxWbmW9S2zTmz5LisD271lZ3QWSnoFGpSg8DyPj3/843z0ox/lb/yNvzED2lWDUdfKjcEE5lmW8YEPfIAPfOADx9LLsozPfOYzfPzjH1/I/L//9/8eIQSf/OQni3tpmjIcDnnllVd4+umnC1CtSBW0bt0PgqCwvupWyjJNXIFGNV2sBo44jmfAlcqPEuxq+lgJbb1MzTJUwE0fwNS7yirtOE5hKZZSEoYhnufRaDQQQhTW75WVFSqVSpH/MAxxHId2u43jOMRxzGQyKQA1UIAHxZNSMBTg1Du/bdBQA1WtVsPzvCJNz/Oo1WokSTIDeJUCpKzVaZrSbDaLQUnVjaovVUZRFBV8+L5PvV4vLPDKujUejwuFQ6XteR6dTqew8qt0dAAdBEFRr3reVMc1LXdqUFftXQdVquz1etYt7no56oLA1hZtgkMH0stQmYCdJ3BUX7YJJrP+lx3olqX/Et0YVF9RMyjKxWU0GtHv92dmIYAZmZRlGevr60UfnUwmxHGMEIKrV68uBZJNMmdCyurdZsU1LeQm2NbjMAd9/b7qDyZQtlmqdGVClzfKmOC6bmEBNAG2jSc93zbS01Bp631ZyVRgxqVPD68AkG600hXwRqNRzJSo2Tn1U2BfCFGMuUEQUK/XZ95RQL5WqxV50YG8okV98lb76bLKgCKzz5b14bfCNUHRreSpDFwum08lD/V3ytKx9Rc9jbL7tvdN3m18msYMvX/ZAK1+bebf1ofM/OlkA+b6GKfzpfO7DGi23Td5ttWpnk/bM/OdRdfz+NLbsU2OKnrttdcWyvGlALpyAVCZVBYcZTFWQkmvAHP60mxcSuj9u3/372YqM8syer0eP/dzP1dYHNfX1/nYxz7G5z73OXZ2dgre9vf3i2nrz3zmM+zv7+P7PnfddRePPfYYnufxW7/1W0V401qkQJlqUNVqlTiOC6uXyqcpOBzHoVarFSBdlYk+lVmpVIr0lKCv1WrHXHaUMFfHJEmKgVjxCBSAVikIjuPQ7XZJkoTV1dWibAeDQeG24Xke4/GYbrfL6urqMdcjgFqtVgh6HQwqcKF3cN2SG4Yh9Xo
},
"metadata": {}
}
],
"source": [
"# Draw\n",
"color = cm.jet(mconf)\n",
"text = [\n",
" 'LoFTR',\n",
" 'Matches: {}'.format(len(mkpts0)),\n",
"]\n",
"fig = make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, text)"
]
},
{
"source": [
"## Outdoor Example"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from src.loftr import LoFTR, default_cfg\n",
"\n",
"# The default config uses dual-softmax.\n",
"# The outdoor and indoor models share the same config.\n",
"# You can change the default values like thr and coarse_match_type.\n",
"matcher = LoFTR(config=default_cfg)\n",
"matcher.load_state_dict(torch.load(\"weights/outdoor_ds.ckpt\")['state_dict'])\n",
"matcher = matcher.eval().cuda()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Load example images\n",
"img0_pth = \"assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg\"\n",
"img1_pth = \"assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg\"\n",
"img0_raw = cv2.imread(img0_pth, cv2.IMREAD_GRAYSCALE)\n",
"img1_raw = cv2.imread(img1_pth, cv2.IMREAD_GRAYSCALE)\n",
"img0_raw = cv2.resize(img0_raw, (img0_raw.shape[1]//8*8, img0_raw.shape[0]//8*8)) # input size shuold be divisible by 8\n",
"img1_raw = cv2.resize(img1_raw, (img1_raw.shape[1]//8*8, img1_raw.shape[0]//8*8))\n",
"\n",
"img0 = torch.from_numpy(img0_raw)[None][None].cuda() / 255.\n",
"img1 = torch.from_numpy(img1_raw)[None][None].cuda() / 255.\n",
"batch = {'image0': img0, 'image1': img1}\n",
"\n",
"# Inference with LoFTR and get prediction\n",
"with torch.no_grad():\n",
" matcher(batch)\n",
" mkpts0 = batch['mkpts0_f'].cpu().numpy()\n",
" mkpts1 = batch['mkpts1_f'].cpu().numpy()\n",
" mconf = batch['mconf'].cpu().numpy()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": "<Figure size 750x450 with 2 Axes>",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"272.470866pt\" version=\"1.1\" viewBox=\"0 0 714.4 272.470866\" width=\"714.4pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-05-26T10:12:18.147382</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.3, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 272.470866 \nL 714.4 272.470866 \nL 714.4 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 7.2 238.945357 \nL 352.2 238.945357 \nL 352.2 33.525509 \nL 7.2 33.525509 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#pbe492ffd1f)\">\n <image height=\"205.44\" id=\"image8cb5229717\" transform=\"scale(1 -1)translate(0 -205.44)\" width=\"345.6\" x=\"7.2\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAWgAAADWCAYAAAD8UhhkAAEAAElEQVR4nMz9SYyk2XUeDD9vzPOcERk5Z2XNQ7OryR7YTTbZzUEiKWqiBC0ICbYE2F4Y3mjhjWF444VXXgiGAcMbAaYhyLBkQNInWqREUmY3m2TP1V1zVc5DzHNExvwtQs/JE7feyKpq0d//XyCRmRHvcIdzz/Cc4Vpf/epXxx6PBzs7O9jZ2YHD4UA8HofL5UK1WkU4HEYoFMJ4PMZ4PIbD4QAAOBwONJtNlEol9Ho9BINBVKtVdLtdAIDL5cJoNEI4HEa73cZgMMBoNILD4YDT6cRoNILL5UI4HMZoNEI8Hkc2m8Xh4SGOjo5wfHwMAPB4POj1ehiNRhiPxwCAcDgMj8eDfr+PdrsNj8cDl8uF4XAIy7LgdDoxGAwwGAwwHA4xGAxgWRYAyG8A8jzLsmBZFlwuF9xuN7xeL/x+P3w+Hzwej/x2Op1wOp0YDocyBr5Ht9FohFqthnq9juFwiFarBZfLBa/Xi3g8jnA4DJ/Ph06ng7W1NeRyORSLRTx8+BAOhwOpVAqVSgX9fl/6FgwGMRqNZC50Gw6HAACn0ynXc3yWZcnajcdjWQO7eWDfAWBpaQmBQACDwQDj8Ri7u7twu904Pj6GZVlIJpPo9Xpwu91wu93I5/PSF/08Pb8OhwM+n08+Iz1ls1l0Oh14vV4cHR1NXT8ej3F8fCxzMR6PEYlE0G63MR6P4fP54HQ6MR6PMRwO0e/3ZT28Xq+Ms9vtYjAYyDNdLhe+9rWv4Rvf+AZ8Pp/Qq9/vx3g8xtHREfb29mSNLcuSsQcCAZRKJfz1X/81zp8/j5dffhlLS0twu91Ci1tbW/jP//k/4/DwEA6HA9FoFOVyGaFQCFevXsWv/uqvYmVlBf1+Hx6PBx6PR9bG5XKh3+/jrbfews2bN5FMJrG2toZKpYIPP/wQABCPx/Hrv/7rCAaD6HQ6Mg/cJw6HA51OBz/84Q9x48YNOBwORCIRpNNpvPfee4hGo4hGo/j617+ORCIh/QgEAhiNRmi1WkIzDx48wDvvvINutwuHwwGPxwO/3y+8YHl5GSsrK/B4PPB6vRiPx+h2u+h0Ouh2uwgEAuh0OiiXy6hWqwgGg/jGN76BSCSCt99+G3/zN38je7bdbqNWq6Hb7U7RqG7j8RiDwQDdbhelUkn2IPtLXmPS4dM20mEgEEA4HEYwGJT9r/cT39/v9+F2u3H9+nU8++yzcDgcqNfrcLlccDgc8pPP53Hjxg3cuHEDvV5vag/qvQsALq/Xi8FgALfbjWAwiH6/j1arBQCo1Wqo1WpIJpOIx+Not9vyskqlgmq1isFggGQyCcuyZHPrzTUYDODz+dBsNuUaEpDD4UAikUC9XkexWMRwOESv10MgEEC328VoNJJBk/EDwGAwgN/vh8vlEoZlWZYQea/XQ7/fF8bFAc9iSpzsfr+PXq8n49eMQjM1Xm/3t2Y8TqcTiUQCPp8PgUAAyWQSgUAAw+EQ3W4Xx8fHcDgc8Pv96PV6U0xfE4nH48H6+joAYHt7G+12e4pJm3OvmymE2F99HT/X91SrVWEs9+/fl+u5KSn8KNQoSM3GeaMApBAhQ9V90N/r8XBTOBwODAYD1Ot1YZrD4RB+vx9+vx+dTkc+93g8WFpaEuG6s7MjDINM/Ec/+hGSySS+9rWvSf/57uFwiHq9PqVUcOM7nU5cuHABS0tLWF9fRyAQgGVZwuScTqcIVI6DdNrv90VYaPox56TX66HT6aBaraLVaqHVaiEcDmM8HsPpdIqC0uv1MBwOZV8NBgP0ej04HA70ej2EQiGsr6+LIHU4HFhZWUE4HEY0GpXr+v2+CDr2m4qI1+uFz+ebUgQqlQp6vR68Xq8IJ4fDgX6/LzRMRsbn9Xo9NBoNoXOOk8pQr9fD8fGxvNvcc5pmXS4XLMtCJBIRRYjXO51OmW9TmTGbpmu9lznOUCiEWCw2pQhYljW1R7lu3PehUEholgKbCsDOzg62t7eFtsy9Z/bLFYlEUKvVZLORIVmWhXA4jFqthlwuJwvidrsRCARQqVRkolwuFxqNxhSj8nq9QozBYBAOh0OIaDwei6aay+UQiUQwGo3QbrfR7/fh9Xrh8XiESQOYYgDcSA6HA5lMBqVSSTRok2BnSWG7Zk6UlpJP2izLgs/nQzAYFOIlEbHvLpcLfr8ftVoNN27cQCwWw3g8RjQaRaVSQafTsX12KBTC6uoqSqUScrmc9FFvbq1B6z7xOjIa/m8KLV47Go2EsVFIOp1OYdBcPzIkPkczUxKgfofH45navNRmSXt2/dJMXY+JzJTaNPum2/HxMXw+H0KhEBYWFlCr1VCtVnF8fIxOp4Pvfve7WFlZwfXr1x8RWh6PR97pdDrR7/eFCabTaUSjUfT7faE9vs+yLBG4XBeuKZlUr9eTH+630WgkdELrYH19XRQEl8uF1dVVjEYjBINBAJiysvg+h8
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAEbCAYAAACItHG6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAuJAAALiQE3ycutAAEAAElEQVR4nOy9d3gkWX31/6nqnFs5j7I0QZqcZ3Ng2SUaFmwwycZgnH8OYAwGFmwDNuY1hsX2i18bFhswNpi0hPXuwrJhZidImjzSBEkzGuVWS2p17gq/P1rdU11T3ZJmF7Ps1nmefrq7uureW7du9T331LnfK6iqigkTJkyYMGHChAkTJl4YEH/eBTBhwoQJEyZMmDBhwsQ1mATdhAkTJkyYMGHChIkXEEyCbsKECRMmTJgwYcLECwgmQTdhwoQJEyZMmDBh4gUEk6CbMGHChAkTJkyYMPECgknQTZgwYcKECRMmTJh4AcH68y6ACRMmTJj4mcKMpWvChAkTL0wIxX4wFXQTJkyYMGHChAkTJl5AMAm6CRMmTJgwYcKECRMvIJgE3YQJEyZMmDBh4n8BqqqiKMrPuxgmfgFgEnQTJkyYMGHChImfEVRVzRPzkZERDh8+TDqd/nkXy8QLHCZBN2HChAkTJkyY+BlDlmWeffZZnnjiCRKJxM+7OCZe4DAJugkTJkyYMGHCxM8Qsixz8eJFDh48SCAQwG63/7yLZOIFDpOgmzBhwoQJEyZM/IygqirxeJwHf/wtzu6u5Acnn2VoaAhVNSOgmigOMw66CRMmTJgwYcLEzxCD85OcfPd2VFEgfW8vT3/9aXp7e7FYLD/vopl4gcIk6CZMmDBhwoQJE88TVFQmSHCKhexLWOBKUwwQs8vSWC08+eSTvOENb6CmpubnXVwTL1CYBN2ECRMmTJgwYeIGkUHhPBFOscBpFjnFAmkUegjSS5Db5SqOf+0HPDTwYzJ720h/81lmZ5OMj49TVVWFIAgIQtEFJU28RGESdBMmTJgwYcKEiVUiQiavjp9mgXNEqMZBD0F2U8E7aacZD+LyKu4SEmcUaDxznE0TP+axUT8bdtxqThQ1URImQTdhwoQJEyZMmDCAisoYcQ0hX2SSBJ346CXIG2mmhwDlOIqnoaqkFsb44j2nEAWVX17v5O9mbqWhocFUz00UhUnQTZgwYcKECRMmgDQKQ8t2lZxCrgI9BOglyH3U040fBytM7kyEYPIQTB7EOvkMv2E5goCKIEClO4Pf78dms/2vnJOJX0yYBN2ECRMmTJgw8ZLEPGlOa9TxISLU4KSXIAeo4j10sg43AiVUblWB8DmYPHjttXQZqndA3X7Y+v8R923m4X/4XZpSR/hRaCsHXnMgH8FFVVVTRTdxHUyCbsKECRMmTJh40UNF5YrGrnKKBaZJ0o2fXoK8mWZ6CBJkBW94egmmDl8j41PPgtUFdQeyhLzn3VC1HaxZ24uqKNgyGcTqTVwYGiRjC7Jt2zacTqdJzE0UhWAGyjdhwoSJFzXMP3kTL0mkkBkssKssIkI+ukovQbrxYy+1ZqOqQmSkUB0Pn4OKTVkynnv5mqEI2ZZlmXT4PPbv9CCoChHJRfRV52lsbPzZnLiJXyQUHaGZBN2ECRMmXtww/+RNvCQQJpUPc3iKBS6wRB2uPBnvJUDjSnYVKQmz/YWEXE5B7b5rZLxmN9i9xdNQZFg4AzOHYOYQ6vQhWBoFJQ1ATLbz1Lpvc8899yCK5oLuL3GYBN2ECRMmXqIw/+RNvOigoHKZWMFkzhlSbMCfV8h7CBBYya4Smywk47MD4G8tVMfLukEoQaRTYZh5Nk/ImT0CNj9U74PqfWTKd/Kfj19k+NBD7Ki4zGNjrVhrdvEnf/InVFZWmiT9pY2iBN30oJswYcKECRMmXtBIInOORU4tK+RnWMCGuEzEg7yWJrrwYStlV1EkCJ1a9o0vE/L4TFYRr9sPu/4caveCq6JEGjIsnL1GxmcOQXQUyrdmCXn3u+HmL4K3KX+IlEgwcuVJnpkSOe1tYfJqirrkZSKRCFVVVc9bHZl4ccEk6CZMmDBhwoSJFxRCpArU8Yss0YSHXgLcSQ3/H93U4yptV0mGsxM4c+r49BFwVl5Txrf9MVRuBrEEFUrNG6jj3rw6Tve7oGI7WJ1Fk7DZbAQrffzSQxVYHQLzIxlOf9JFWVkZOReDOVnUhB4mQTdhwoQJEyZM/NygoDJCdJmQZxXyeVJsWI49/uu0s4kAPkrEDVcVmD9faFdZvARV27JkvPe34WX/Bt6G0mksnCtUxyOXoHwL1OyH7t+Am/8FPE1FJ4TmIJFmjmFmucCMOITnrccR3CKCIBBclz0P02JsohRMgm7ChAkTJkyY+F9DApmzmsmcZ1nEiSU/mfN+mujEh7WUXSUTg6kjMHVo2bJyCATLcqjDfbDxHdk45FZX8TRSCzB7WKOOHwaL65o63vlrULlCGmTDNy4xzSwXmOUCIS4wzxX81FJFJ9WZTRx6KETIcY7m22yc+7pENBolHA5TXl5+Q3Vo4sUPc5KoCRMmTLy4Yf7Jm/i5YpZkQezxYaKsw6OJrhKkFmdxu4qqwtKVQnV87jSUr8+q47XLlpVAW3FlW1VgYVCnjl+E8s3XCHn1PvAWD5eYQ5o4IS4uk/HsO0AVnVTSkX+/Kjn4aipN0+URHv34x1lKLFCz3k3ofBoUeOOvdXPP7W8h4NqEIAimzeWlCTOKiwkTJky8RGH+yZv4X4OMynDerpJ9Rciwcdmu0kOATQTwlrKryOlsNBUtIc9EsxM486EO94DDXzyNdKRQHZ95FiyOQjJeuQOs7pLno6CwyNW8Mj7LBSJMEaSJKjqpoosqOvFRUzDAWFIUNi1EmVFVBFni5j/4HV75Nxk8NRYWRyW850fY/bIlLBYLLfK38Nk3rrWqTbw4YBJ0EyZMmHiJwvyTN/EzQxypwK5yhkW8WAsWA2rHW9quEp+GSY1VZfoY+JqukfHafVC+EUSL8fGqAovnC9XxxfNQ1pMl4jX7l9XxlhXV8SSRAqtKiEtYcS6T8eyrgjasOPLHyKrKkKxwWJY5ImVf52WJSnGGdZZh2iwX2D//GPUNUTzE8KgxXCSyx0oiZdGPs67s/rVWvYkXB0yCbsKECRMvUZh/8iaeN0yTKJjMOUqUFrwFiwHVUMKzrcgQPlOojkfHoWZXISF3lwg/mI5ko6lo1XHRqlPHd4LNU/JcFCTCXC5Qx+OEKae1gJC7qShQx6cVhSOSzFFJ5rAk0yfJVItR7rBfZqNthBrLaRzCKVxEEaUkQWGeTFJgIeol43czeiTI7BEXN99/noUZP02Wj7Nr5z7AjObyEsSNEfT5+XlVFMW8N0oQBERRRL9Nm0aucRk1Mn1ez6Uh6tPKfVdVteClKIrhMblyG5X9uZQtl6e2PNoyaD8blVeW5ZLnt1LeemjPY6U0tNczdw7aV7F0V0rPqBzaNLX1pS9nsTKvZWBZat9cubTXqdT+2pBYRvWymjpeSxlXuqZGv2mvY7F9S6WRu7+N0tS/tL9ry2x0P2rPp1jdGZVZ206M9l9N3RVLu1iZc/nlXnoYbSuWtxZr/V/RXgv9f9W+fftWm5hJ0E3cECQULmnsKqdZIIrEpmW7Si9BNhLAXSreRGoRpg5fI+NTz4LdX7gQUNVWsBRZUEhVIXIBpg9q1PEhKNtUSMh9Jfzny4gxV6COzzGMi3Kqln3jVXRSRgsWzfkkVZXjkswR+Rohn1PS3OkYZ4dtlCbLED7xOHYmKRNUXOo8IgnsahfENnPmaIbUQjM2arHZ7AiCkP//yGQyxONxWlpa2L17NzabzVy06KWHGyfoRp2yxWK5rpMuSLQIeX8+Cbo+vWKkwKgjvVESpYX2JtLuL8vydcS2GCkx2k9L0vXlXancRue6ljrWEoFS57DadEtNeimWvjYP/Wf98WuFUf3krmOxgVyxfP+3CLrR76sh6MW+G0HfIRgNqrQDdH2a+uNvlKDrfzciptpB1FrI+Wr20Q8ac+/FBggrYa2DKyOU6qz3799vEnQTzyuiZDiTt6ssco5FAtjyZLyHIG14sZSazLl4sVA
},
"metadata": {}
}
],
"source": [
"# Draw\n",
"color = cm.jet(mconf)\n",
"text = [\n",
" 'LoFTR',\n",
" 'Matches: {}'.format(len(mkpts0)),\n",
"]\n",
"fig = make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
]
}