You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
717 lines
23 KiB
717 lines
23 KiB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved |
|
""" |
|
Misc functions, including distributed helpers. |
|
|
|
Mostly copy-paste from torchvision references. |
|
""" |
|
import colorsys |
|
import datetime |
|
import functools |
|
import io |
|
import json |
|
import os |
|
import pickle |
|
import subprocess |
|
import time |
|
from collections import OrderedDict, defaultdict, deque |
|
from typing import List, Optional |
|
|
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
|
|
# needed due to empty tensor bug in pytorch and torchvision 0.5 |
|
import torchvision |
|
from torch import Tensor |
|
|
|
__torchvision_need_compat_flag = float(torchvision.__version__.split(".")[1]) < 7 |
|
if __torchvision_need_compat_flag: |
|
from torchvision.ops import _new_empty_tensor |
|
from torchvision.ops.misc import _output_size |
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
if d.shape[0] == 0: |
|
return 0 |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
if os.environ.get("SHILONG_AMP", None) == "1": |
|
eps = 1e-4 |
|
else: |
|
eps = 1e-6 |
|
return self.total / (self.count + eps) |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value, |
|
) |
|
|
|
|
|
@functools.lru_cache() |
|
def _get_global_gloo_group(): |
|
""" |
|
Return a process group based on gloo backend, containing all the ranks |
|
The result is cached. |
|
""" |
|
|
|
if dist.get_backend() == "nccl": |
|
return dist.new_group(backend="gloo") |
|
|
|
return dist.group.WORLD |
|
|
|
|
|
def all_gather_cpu(data): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
Args: |
|
data: any picklable object |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
|
|
world_size = get_world_size() |
|
if world_size == 1: |
|
return [data] |
|
|
|
cpu_group = _get_global_gloo_group() |
|
|
|
buffer = io.BytesIO() |
|
torch.save(data, buffer) |
|
data_view = buffer.getbuffer() |
|
device = "cuda" if cpu_group is None else "cpu" |
|
tensor = torch.ByteTensor(data_view).to(device) |
|
|
|
# obtain Tensor size of each rank |
|
local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long) |
|
size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)] |
|
if cpu_group is None: |
|
dist.all_gather(size_list, local_size) |
|
else: |
|
print("gathering on cpu") |
|
dist.all_gather(size_list, local_size, group=cpu_group) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
assert isinstance(local_size.item(), int) |
|
local_size = int(local_size.item()) |
|
|
|
# receiving Tensor from all ranks |
|
# we pad the tensor because torch all_gather does not support |
|
# gathering tensors of different shapes |
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device)) |
|
if local_size != max_size: |
|
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device) |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
if cpu_group is None: |
|
dist.all_gather(tensor_list, tensor) |
|
else: |
|
dist.all_gather(tensor_list, tensor, group=cpu_group) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
tensor = torch.split(tensor, [size, max_size - size], dim=0)[0] |
|
buffer = io.BytesIO(tensor.cpu().numpy()) |
|
obj = torch.load(buffer) |
|
data_list.append(obj) |
|
|
|
return data_list |
|
|
|
|
|
def all_gather(data): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
Args: |
|
data: any picklable object |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
|
|
if os.getenv("CPU_REDUCE") == "1": |
|
return all_gather_cpu(data) |
|
|
|
world_size = get_world_size() |
|
if world_size == 1: |
|
return [data] |
|
|
|
# serialized to a Tensor |
|
buffer = pickle.dumps(data) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to("cuda") |
|
|
|
# obtain Tensor size of each rank |
|
local_size = torch.tensor([tensor.numel()], device="cuda") |
|
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] |
|
dist.all_gather(size_list, local_size) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
|
|
# receiving Tensor from all ranks |
|
# we pad the tensor because torch all_gather does not support |
|
# gathering tensors of different shapes |
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) |
|
if local_size != max_size: |
|
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
dist.all_gather(tensor_list, tensor) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
|
|
return data_list |
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Args: |
|
input_dict (dict): all the values will be reduced |
|
average (bool): whether to do average or sum |
|
Reduce the values in the dictionary from all processes so that all processes |
|
have the averaged results. Returns a dict with the same fields as |
|
input_dict, after reduction. |
|
""" |
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return input_dict |
|
with torch.no_grad(): |
|
names = [] |
|
values = [] |
|
# sort the keys so that they are consistent across processes |
|
for k in sorted(input_dict.keys()): |
|
names.append(k) |
|
values.append(input_dict[k]) |
|
values = torch.stack(values, dim=0) |
|
dist.all_reduce(values) |
|
if average: |
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
# print(name, str(meter)) |
|
# import ipdb;ipdb.set_trace() |
|
if meter.count > 0: |
|
loss_str.append("{}: {}".format(name, str(meter))) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None, logger=None): |
|
if logger is None: |
|
print_func = print |
|
else: |
|
print_func = logger.info |
|
|
|
i = 0 |
|
if not header: |
|
header = "" |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt="{avg:.4f}") |
|
data_time = SmoothedValue(fmt="{avg:.4f}") |
|
space_fmt = ":" + str(len(str(len(iterable)))) + "d" |
|
if torch.cuda.is_available(): |
|
log_msg = self.delimiter.join( |
|
[ |
|
header, |
|
"[{0" + space_fmt + "}/{1}]", |
|
"eta: {eta}", |
|
"{meters}", |
|
"time: {time}", |
|
"data: {data}", |
|
"max mem: {memory:.0f}", |
|
] |
|
) |
|
else: |
|
log_msg = self.delimiter.join( |
|
[ |
|
header, |
|
"[{0" + space_fmt + "}/{1}]", |
|
"eta: {eta}", |
|
"{meters}", |
|
"time: {time}", |
|
"data: {data}", |
|
] |
|
) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
# import ipdb; ipdb.set_trace() |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print_func( |
|
log_msg.format( |
|
i, |
|
len(iterable), |
|
eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), |
|
data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB, |
|
) |
|
) |
|
else: |
|
print_func( |
|
log_msg.format( |
|
i, |
|
len(iterable), |
|
eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), |
|
data=str(data_time), |
|
) |
|
) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print_func( |
|
"{} Total time: {} ({:.4f} s / it)".format( |
|
header, total_time_str, total_time / len(iterable) |
|
) |
|
) |
|
|
|
|
|
def get_sha(): |
|
cwd = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
def _run(command): |
|
return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() |
|
|
|
sha = "N/A" |
|
diff = "clean" |
|
branch = "N/A" |
|
try: |
|
sha = _run(["git", "rev-parse", "HEAD"]) |
|
subprocess.check_output(["git", "diff"], cwd=cwd) |
|
diff = _run(["git", "diff-index", "HEAD"]) |
|
diff = "has uncommited changes" if diff else "clean" |
|
branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) |
|
except Exception: |
|
pass |
|
message = f"sha: {sha}, status: {diff}, branch: {branch}" |
|
return message |
|
|
|
|
|
def collate_fn(batch): |
|
# import ipdb; ipdb.set_trace() |
|
batch = list(zip(*batch)) |
|
batch[0] = nested_tensor_from_tensor_list(batch[0]) |
|
return tuple(batch) |
|
|
|
|
|
def _max_by_axis(the_list): |
|
# type: (List[List[int]]) -> List[int] |
|
maxes = the_list[0] |
|
for sublist in the_list[1:]: |
|
for index, item in enumerate(sublist): |
|
maxes[index] = max(maxes[index], item) |
|
return maxes |
|
|
|
|
|
class NestedTensor(object): |
|
def __init__(self, tensors, mask: Optional[Tensor]): |
|
self.tensors = tensors |
|
self.mask = mask |
|
if mask == "auto": |
|
self.mask = torch.zeros_like(tensors).to(tensors.device) |
|
if self.mask.dim() == 3: |
|
self.mask = self.mask.sum(0).to(bool) |
|
elif self.mask.dim() == 4: |
|
self.mask = self.mask.sum(1).to(bool) |
|
else: |
|
raise ValueError( |
|
"tensors dim must be 3 or 4 but {}({})".format( |
|
self.tensors.dim(), self.tensors.shape |
|
) |
|
) |
|
|
|
def imgsize(self): |
|
res = [] |
|
for i in range(self.tensors.shape[0]): |
|
mask = self.mask[i] |
|
maxH = (~mask).sum(0).max() |
|
maxW = (~mask).sum(1).max() |
|
res.append(torch.Tensor([maxH, maxW])) |
|
return res |
|
|
|
def to(self, device): |
|
# type: (Device) -> NestedTensor # noqa |
|
cast_tensor = self.tensors.to(device) |
|
mask = self.mask |
|
if mask is not None: |
|
assert mask is not None |
|
cast_mask = mask.to(device) |
|
else: |
|
cast_mask = None |
|
return NestedTensor(cast_tensor, cast_mask) |
|
|
|
def to_img_list_single(self, tensor, mask): |
|
assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(tensor.dim()) |
|
maxH = (~mask).sum(0).max() |
|
maxW = (~mask).sum(1).max() |
|
img = tensor[:, :maxH, :maxW] |
|
return img |
|
|
|
def to_img_list(self): |
|
"""remove the padding and convert to img list |
|
|
|
Returns: |
|
[type]: [description] |
|
""" |
|
if self.tensors.dim() == 3: |
|
return self.to_img_list_single(self.tensors, self.mask) |
|
else: |
|
res = [] |
|
for i in range(self.tensors.shape[0]): |
|
tensor_i = self.tensors[i] |
|
mask_i = self.mask[i] |
|
res.append(self.to_img_list_single(tensor_i, mask_i)) |
|
return res |
|
|
|
@property |
|
def device(self): |
|
return self.tensors.device |
|
|
|
def decompose(self): |
|
return self.tensors, self.mask |
|
|
|
def __repr__(self): |
|
return str(self.tensors) |
|
|
|
@property |
|
def shape(self): |
|
return {"tensors.shape": self.tensors.shape, "mask.shape": self.mask.shape} |
|
|
|
|
|
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): |
|
# TODO make this more general |
|
if tensor_list[0].ndim == 3: |
|
if torchvision._is_tracing(): |
|
# nested_tensor_from_tensor_list() does not export well to ONNX |
|
# call _onnx_nested_tensor_from_tensor_list() instead |
|
return _onnx_nested_tensor_from_tensor_list(tensor_list) |
|
|
|
# TODO make it support different-sized images |
|
max_size = _max_by_axis([list(img.shape) for img in tensor_list]) |
|
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) |
|
batch_shape = [len(tensor_list)] + max_size |
|
b, c, h, w = batch_shape |
|
dtype = tensor_list[0].dtype |
|
device = tensor_list[0].device |
|
tensor = torch.zeros(batch_shape, dtype=dtype, device=device) |
|
mask = torch.ones((b, h, w), dtype=torch.bool, device=device) |
|
for img, pad_img, m in zip(tensor_list, tensor, mask): |
|
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) |
|
m[: img.shape[1], : img.shape[2]] = False |
|
else: |
|
raise ValueError("not supported") |
|
return NestedTensor(tensor, mask) |
|
|
|
|
|
# _onnx_nested_tensor_from_tensor_list() is an implementation of |
|
# nested_tensor_from_tensor_list() that is supported by ONNX tracing. |
|
@torch.jit.unused |
|
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: |
|
max_size = [] |
|
for i in range(tensor_list[0].dim()): |
|
max_size_i = torch.max( |
|
torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) |
|
).to(torch.int64) |
|
max_size.append(max_size_i) |
|
max_size = tuple(max_size) |
|
|
|
# work around for |
|
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) |
|
# m[: img.shape[1], :img.shape[2]] = False |
|
# which is not yet supported in onnx |
|
padded_imgs = [] |
|
padded_masks = [] |
|
for img in tensor_list: |
|
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] |
|
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) |
|
padded_imgs.append(padded_img) |
|
|
|
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) |
|
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) |
|
padded_masks.append(padded_mask.to(torch.bool)) |
|
|
|
tensor = torch.stack(padded_imgs) |
|
mask = torch.stack(padded_masks) |
|
|
|
return NestedTensor(tensor, mask=mask) |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
|
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop("force", False) |
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def init_distributed_mode(args): |
|
if "WORLD_SIZE" in os.environ and os.environ["WORLD_SIZE"] != "": # 'RANK' in os.environ and |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ["WORLD_SIZE"]) |
|
args.gpu = args.local_rank = int(os.environ["LOCAL_RANK"]) |
|
|
|
# launch by torch.distributed.launch |
|
# Single node |
|
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ... |
|
# Multi nodes |
|
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... |
|
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... |
|
# args.rank = int(os.environ.get('OMPI_COMM_WORLD_RANK')) |
|
# local_world_size = int(os.environ['GPU_PER_NODE_COUNT']) |
|
# args.world_size = args.world_size * local_world_size |
|
# args.gpu = args.local_rank = int(os.environ['LOCAL_RANK']) |
|
# args.rank = args.rank * local_world_size + args.local_rank |
|
print( |
|
"world size: {}, rank: {}, local rank: {}".format( |
|
args.world_size, args.rank, args.local_rank |
|
) |
|
) |
|
print(json.dumps(dict(os.environ), indent=2)) |
|
elif "SLURM_PROCID" in os.environ: |
|
args.rank = int(os.environ["SLURM_PROCID"]) |
|
args.gpu = args.local_rank = int(os.environ["SLURM_LOCALID"]) |
|
args.world_size = int(os.environ["SLURM_NPROCS"]) |
|
|
|
print( |
|
"world size: {}, world rank: {}, local rank: {}, device_count: {}".format( |
|
args.world_size, args.rank, args.local_rank, torch.cuda.device_count() |
|
) |
|
) |
|
else: |
|
print("Not using distributed mode") |
|
args.distributed = False |
|
args.world_size = 1 |
|
args.rank = 0 |
|
args.local_rank = 0 |
|
return |
|
|
|
print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank)) |
|
args.distributed = True |
|
torch.cuda.set_device(args.local_rank) |
|
args.dist_backend = "nccl" |
|
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True) |
|
|
|
torch.distributed.init_process_group( |
|
backend=args.dist_backend, |
|
world_size=args.world_size, |
|
rank=args.rank, |
|
init_method=args.dist_url, |
|
) |
|
|
|
print("Before torch.distributed.barrier()") |
|
torch.distributed.barrier() |
|
print("End torch.distributed.barrier()") |
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
@torch.no_grad() |
|
def accuracy(output, target, topk=(1,)): |
|
"""Computes the precision@k for the specified values of k""" |
|
if target.numel() == 0: |
|
return [torch.zeros([], device=output.device)] |
|
maxk = max(topk) |
|
batch_size = target.size(0) |
|
|
|
_, pred = output.topk(maxk, 1, True, True) |
|
pred = pred.t() |
|
correct = pred.eq(target.view(1, -1).expand_as(pred)) |
|
|
|
res = [] |
|
for k in topk: |
|
correct_k = correct[:k].view(-1).float().sum(0) |
|
res.append(correct_k.mul_(100.0 / batch_size)) |
|
return res |
|
|
|
|
|
@torch.no_grad() |
|
def accuracy_onehot(pred, gt): |
|
"""_summary_ |
|
|
|
Args: |
|
pred (_type_): n, c |
|
gt (_type_): n, c |
|
""" |
|
tp = ((pred - gt).abs().sum(-1) < 1e-4).float().sum() |
|
acc = tp / gt.shape[0] * 100 |
|
return acc |
|
|
|
|
|
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): |
|
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor |
|
""" |
|
Equivalent to nn.functional.interpolate, but with support for empty batch sizes. |
|
This will eventually be supported natively by PyTorch, and this |
|
class can go away. |
|
""" |
|
if __torchvision_need_compat_flag < 0.7: |
|
if input.numel() > 0: |
|
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) |
|
|
|
output_shape = _output_size(2, input, size, scale_factor) |
|
output_shape = list(input.shape[:-2]) + list(output_shape) |
|
return _new_empty_tensor(input, output_shape) |
|
else: |
|
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) |
|
|
|
|
|
class color_sys: |
|
def __init__(self, num_colors) -> None: |
|
self.num_colors = num_colors |
|
colors = [] |
|
for i in np.arange(0.0, 360.0, 360.0 / num_colors): |
|
hue = i / 360.0 |
|
lightness = (50 + np.random.rand() * 10) / 100.0 |
|
saturation = (90 + np.random.rand() * 10) / 100.0 |
|
colors.append( |
|
tuple([int(j * 255) for j in colorsys.hls_to_rgb(hue, lightness, saturation)]) |
|
) |
|
self.colors = colors |
|
|
|
def __call__(self, idx): |
|
return self.colors[idx] |
|
|
|
|
|
def inverse_sigmoid(x, eps=1e-3): |
|
x = x.clamp(min=0, max=1) |
|
x1 = x.clamp(min=eps) |
|
x2 = (1 - x).clamp(min=eps) |
|
return torch.log(x1 / x2) |
|
|
|
|
|
def clean_state_dict(state_dict): |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
if k[:7] == "module.": |
|
k = k[7:] # remove `module.` |
|
new_state_dict[k] = v |
|
return new_state_dict
|
|
|