feature/first_batch_of_model_usability_upgrades (#9)

* initial commit

* test updated requirements.txt

* move more code to inference utils

* PIL import fix

* add annotations utilities

* README.md updates
fix/11_simplify_getting_output_labels
Piotr Skalski 2 years ago committed by GitHub
parent 12ef464f9e
commit 2309f9f468
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 4
      .gitignore
  2. 34
      README.md
  3. 97
      groundingdino/util/inference.py
  4. 10
      requirements.txt

4
.gitignore vendored

@ -1,3 +1,7 @@
# IDE
.idea/
.vscode/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

@ -1,14 +1,21 @@
# Grounding DINO
---
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-mscoco)](https://paperswithcode.com/sota/zero-shot-object-detection-on-mscoco?p=grounding-dino-marrying-dino-with-grounded) \
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-odinw)](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) \
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded)
# Grounding DINO
Official pytorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now!
## Highlight
- **Open-Set Detection.** Detect **everything** with language!
- **High Performancce.** COCO zero-shot **52.5 AP** (training without COCO data!). COCO fine-tune **63.0 AP**.
- **Flexible.** Collaboration with Stable Diffusion for Image Editting.
@ -23,21 +30,22 @@ Description
<img src=".asset/hero_figure.png" alt="ODinW" width="100%">
</details>
## TODO List
## TODO
- [x] Release inference code and demo.
- [x] Release checkpoints.
- [ ] Grounding DINO with Stable Diffusion and GLIGEN demos.
## Install
## Usage
### 1. Install
If you have a CUDA environment, please make sure the environment variable `CUDA_HOME` is set.
```bash
pip install -e .
```
### 2. Run an inference demo
## Demo
See the `demo/inference_on_a_image.py` for more details.
```bash
CUDA_VISIBLE_DEVICES=6 python demo/inference_on_a_image.py \
@ -48,7 +56,8 @@ CUDA_VISIBLE_DEVICES=6 python demo/inference_on_a_image.py \
-t "cat ear."
```
### Checkpoints
## Checkpoints
<!-- insert a table -->
<table>
<thead>
@ -74,6 +83,7 @@ CUDA_VISIBLE_DEVICES=6 python demo/inference_on_a_image.py \
</table>
## Results
<details open>
<summary><font size="4">
COCO Object Detection Results
@ -102,11 +112,6 @@ Marrying Grounding DINO with <a href="https://github.com/gligen/GLIGEN">GLIGEN</
<img src=".asset/GD_GLIGEN.png" alt="GD_GLIGEN" width="100%">
</details>
## Model
Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.
@ -114,7 +119,8 @@ Includes: a text backbone, an image backbone, a feature enhancer, a language-gui
![arch](.asset/arch.png)
# Links
## Acknowledgement
Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work!
We also thank great previous work including DETR, Deformable DETR, SMCA, Conditional DETR, Anchor DETR, Dynamic DETR, DAB-DETR, DN-DETR, etc. More related work are available at [Awesome Detection Transformer](https://github.com/IDEACVR/awesome-detection-transformer). A new toolbox [detrex](https://github.com/IDEA-Research/detrex) is available as well.
@ -122,8 +128,10 @@ We also thank great previous work including DETR, Deformable DETR, SMCA, Conditi
Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models.
# Bibtex
## Citation
If you find our work helpful for your research, please consider citing the following BibTeX entry.
```bibtex
@inproceedings{ShilongLiu2023GroundingDM,
title={Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection},

@ -0,0 +1,97 @@
from typing import Tuple, List
import cv2
import numpy as np
import supervision as sv
import torch
from PIL import Image
from torchvision.ops import box_convert
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util.misc import clean_state_dict
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import get_phrases_from_posmap
def preprocess_caption(caption: str) -> str:
result = caption.lower().strip()
if result.endswith("."):
return result
return result + "."
def load_model(model_config_path: str, model_checkpoint_path: str):
args = SLConfig.fromfile(model_config_path)
args.device = "cuda"
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
model.eval()
return model
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = Image.open(image_path).convert("RGB")
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def predict(
model,
image: torch.Tensor,
caption: str,
box_threshold: float,
text_threshold: float
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
caption = preprocess_caption(caption=caption)
model = model.cuda()
image = image.cuda()
with torch.no_grad():
outputs = model(image[None], captions=[caption])
prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256)
prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4)
mask = prediction_logits.max(dim=1)[0] > box_threshold
logits = prediction_logits[mask] # logits.shape = (n, 256)
boxes = prediction_boxes[mask] # boxes.shape = (n, 4)
tokenizer = model.tokenizer
tokenized = tokenizer(caption)
phrases = [
get_phrases_from_posmap(logit > text_threshold, tokenized, caption).replace('.', '')
for logit
in logits
]
return boxes, logits.max(dim=1)[0], phrases
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
h, w, _ = image_source.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
detections = sv.Detections(xyxy=xyxy)
labels = [
f"{phrase} {logit:.2f}"
for phrase, logit
in zip(phrases, logits)
]
box_annotator = sv.BoxAnnotator()
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
return annotated_frame

@ -1 +1,9 @@
transformers==4.5.1
torch
torchvision
transformers
addict
yapf
timm
numpy
opencv-python
supervision==0.3.2
Loading…
Cancel
Save