feature/first_batch_of_model_usability_upgrades (#9)
* initial commit * test updated requirements.txt * move more code to inference utils * PIL import fix * add annotations utilities * README.md updatesfix/11_simplify_getting_output_labels
parent
12ef464f9e
commit
2309f9f468
4 changed files with 131 additions and 14 deletions
@ -0,0 +1,97 @@ |
||||
from typing import Tuple, List |
||||
|
||||
import cv2 |
||||
import numpy as np |
||||
import supervision as sv |
||||
import torch |
||||
from PIL import Image |
||||
from torchvision.ops import box_convert |
||||
|
||||
import groundingdino.datasets.transforms as T |
||||
from groundingdino.models import build_model |
||||
from groundingdino.util.misc import clean_state_dict |
||||
from groundingdino.util.slconfig import SLConfig |
||||
from groundingdino.util.utils import get_phrases_from_posmap |
||||
|
||||
|
||||
def preprocess_caption(caption: str) -> str: |
||||
result = caption.lower().strip() |
||||
if result.endswith("."): |
||||
return result |
||||
return result + "." |
||||
|
||||
|
||||
def load_model(model_config_path: str, model_checkpoint_path: str): |
||||
args = SLConfig.fromfile(model_config_path) |
||||
args.device = "cuda" |
||||
model = build_model(args) |
||||
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") |
||||
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) |
||||
model.eval() |
||||
return model |
||||
|
||||
|
||||
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]: |
||||
transform = T.Compose( |
||||
[ |
||||
T.RandomResize([800], max_size=1333), |
||||
T.ToTensor(), |
||||
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
||||
] |
||||
) |
||||
image_source = Image.open(image_path).convert("RGB") |
||||
image = np.asarray(image_source) |
||||
image_transformed, _ = transform(image_source, None) |
||||
return image, image_transformed |
||||
|
||||
|
||||
def predict( |
||||
model, |
||||
image: torch.Tensor, |
||||
caption: str, |
||||
box_threshold: float, |
||||
text_threshold: float |
||||
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]: |
||||
caption = preprocess_caption(caption=caption) |
||||
|
||||
model = model.cuda() |
||||
image = image.cuda() |
||||
|
||||
with torch.no_grad(): |
||||
outputs = model(image[None], captions=[caption]) |
||||
|
||||
prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256) |
||||
prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4) |
||||
|
||||
mask = prediction_logits.max(dim=1)[0] > box_threshold |
||||
logits = prediction_logits[mask] # logits.shape = (n, 256) |
||||
boxes = prediction_boxes[mask] # boxes.shape = (n, 4) |
||||
|
||||
tokenizer = model.tokenizer |
||||
tokenized = tokenizer(caption) |
||||
|
||||
phrases = [ |
||||
get_phrases_from_posmap(logit > text_threshold, tokenized, caption).replace('.', '') |
||||
for logit |
||||
in logits |
||||
] |
||||
|
||||
return boxes, logits.max(dim=1)[0], phrases |
||||
|
||||
|
||||
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray: |
||||
h, w, _ = image_source.shape |
||||
boxes = boxes * torch.Tensor([w, h, w, h]) |
||||
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() |
||||
detections = sv.Detections(xyxy=xyxy) |
||||
|
||||
labels = [ |
||||
f"{phrase} {logit:.2f}" |
||||
for phrase, logit |
||||
in zip(phrases, logits) |
||||
] |
||||
|
||||
box_annotator = sv.BoxAnnotator() |
||||
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR) |
||||
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels) |
||||
return annotated_frame |
@ -1 +1,9 @@ |
||||
transformers==4.5.1 |
||||
torch |
||||
torchvision |
||||
transformers |
||||
addict |
||||
yapf |
||||
timm |
||||
numpy |
||||
opencv-python |
||||
supervision==0.3.2 |
Loading…
Reference in new issue