|
|
|
from typing import Tuple, List
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import supervision as sv
|
|
|
|
import torch
|
|
|
|
from PIL import Image
|
|
|
|
from torchvision.ops import box_convert
|
|
|
|
|
|
|
|
import groundingdino.datasets.transforms as T
|
|
|
|
from groundingdino.models import build_model
|
|
|
|
from groundingdino.util.misc import clean_state_dict
|
|
|
|
from groundingdino.util.slconfig import SLConfig
|
|
|
|
from groundingdino.util.utils import get_phrases_from_posmap
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess_caption(caption: str) -> str:
|
|
|
|
result = caption.lower().strip()
|
|
|
|
if result.endswith("."):
|
|
|
|
return result
|
|
|
|
return result + "."
|
|
|
|
|
|
|
|
|
|
|
|
def load_model(model_config_path: str, model_checkpoint_path: str):
|
|
|
|
args = SLConfig.fromfile(model_config_path)
|
|
|
|
args.device = "cuda"
|
|
|
|
model = build_model(args)
|
|
|
|
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
|
|
|
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
|
|
|
model.eval()
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
|
|
|
|
transform = T.Compose(
|
|
|
|
[
|
|
|
|
T.RandomResize([800], max_size=1333),
|
|
|
|
T.ToTensor(),
|
|
|
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
image_source = Image.open(image_path).convert("RGB")
|
|
|
|
image = np.asarray(image_source)
|
|
|
|
image_transformed, _ = transform(image_source, None)
|
|
|
|
return image, image_transformed
|
|
|
|
|
|
|
|
|
|
|
|
def predict(
|
|
|
|
model,
|
|
|
|
image: torch.Tensor,
|
|
|
|
caption: str,
|
|
|
|
box_threshold: float,
|
|
|
|
text_threshold: float
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
|
|
|
|
caption = preprocess_caption(caption=caption)
|
|
|
|
|
|
|
|
model = model.cuda()
|
|
|
|
image = image.cuda()
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
outputs = model(image[None], captions=[caption])
|
|
|
|
|
|
|
|
prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256)
|
|
|
|
prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4)
|
|
|
|
|
|
|
|
mask = prediction_logits.max(dim=1)[0] > box_threshold
|
|
|
|
logits = prediction_logits[mask] # logits.shape = (n, 256)
|
|
|
|
boxes = prediction_boxes[mask] # boxes.shape = (n, 4)
|
|
|
|
|
|
|
|
tokenizer = model.tokenizer
|
|
|
|
tokenized = tokenizer(caption)
|
|
|
|
|
|
|
|
phrases = [
|
|
|
|
get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '')
|
|
|
|
for logit
|
|
|
|
in logits
|
|
|
|
]
|
|
|
|
|
|
|
|
return boxes, logits.max(dim=1)[0], phrases
|
|
|
|
|
|
|
|
|
|
|
|
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
|
|
|
|
h, w, _ = image_source.shape
|
|
|
|
boxes = boxes * torch.Tensor([w, h, w, h])
|
|
|
|
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
|
|
|
detections = sv.Detections(xyxy=xyxy)
|
|
|
|
|
|
|
|
labels = [
|
|
|
|
f"{phrase} {logit:.2f}"
|
|
|
|
for phrase, logit
|
|
|
|
in zip(phrases, logits)
|
|
|
|
]
|
|
|
|
|
|
|
|
box_annotator = sv.BoxAnnotator()
|
|
|
|
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
|
|
|
|
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
|
|
|
return annotated_frame
|