You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
4.3 KiB
122 lines
4.3 KiB
2 years ago
|
import argparse
|
||
|
from functools import partial
|
||
|
import cv2
|
||
|
import requests
|
||
|
import os
|
||
|
from io import BytesIO
|
||
|
from PIL import Image
|
||
|
import numpy as np
|
||
|
from pathlib import Path
|
||
|
import gradio as gr
|
||
|
|
||
|
import warnings
|
||
|
|
||
|
import torch
|
||
|
|
||
|
os.system("python setup.py build develop --user")
|
||
|
os.system("pip install packaging==21.3")
|
||
|
warnings.filterwarnings("ignore")
|
||
|
|
||
|
|
||
|
from groundingdino.models import build_model
|
||
|
from groundingdino.util.slconfig import SLConfig
|
||
|
from groundingdino.util.utils import clean_state_dict
|
||
|
from groundingdino.util.inference import annotate, load_image, predict
|
||
|
import groundingdino.datasets.transforms as T
|
||
|
|
||
|
from huggingface_hub import hf_hub_download
|
||
|
|
||
|
|
||
|
|
||
|
# Use this command for evaluate the GLIP-T model
|
||
|
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
||
|
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
||
|
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
||
|
|
||
|
|
||
|
def load_model_hf(model_config_path, repo_id, filename):
|
||
|
args = SLConfig.fromfile(model_config_path)
|
||
|
args.device = 'cuda'
|
||
|
model = build_model(args)
|
||
|
|
||
|
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
||
|
checkpoint = torch.load(cache_file, map_location='cpu')
|
||
|
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
||
|
print("Model loaded from {} \n => {}".format(cache_file, log))
|
||
|
_ = model.eval()
|
||
|
return model
|
||
|
|
||
|
def image_transform_grounding(init_image):
|
||
|
transform = T.Compose([
|
||
|
T.RandomResize([800], max_size=1333),
|
||
|
T.ToTensor(),
|
||
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||
|
])
|
||
|
image, _ = transform(init_image, None) # 3, h, w
|
||
|
return init_image, image
|
||
|
|
||
|
def image_transform_grounding_for_vis(init_image):
|
||
|
transform = T.Compose([
|
||
|
T.RandomResize([800], max_size=1333),
|
||
|
])
|
||
|
image, _ = transform(init_image, None) # 3, h, w
|
||
|
return image
|
||
|
|
||
|
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
||
|
|
||
|
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
|
||
|
init_image = input_image.convert("RGB")
|
||
|
original_size = init_image.size
|
||
|
|
||
|
_, image_tensor = image_transform_grounding(init_image)
|
||
|
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
||
|
|
||
|
# run grounidng
|
||
|
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold)
|
||
|
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
||
|
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
||
|
|
||
|
|
||
|
return image_with_box
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
|
||
|
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
||
|
parser.add_argument("--non-share", action="store_true", help="not share the app")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
args.share = (not args.non_share)
|
||
|
|
||
|
block = gr.Blocks().queue()
|
||
|
with block:
|
||
|
gr.Markdown("# Grounding DINO")
|
||
|
gr.Markdown("### Open-World Detection with Grounding DINO")
|
||
|
|
||
|
with gr.Row():
|
||
|
with gr.Column():
|
||
|
input_image = gr.Image(source='upload', type="pil")
|
||
|
grounding_caption = gr.Textbox(label="Detection Prompt")
|
||
|
run_button = gr.Button(label="Run")
|
||
|
with gr.Accordion("Advanced options", open=False):
|
||
|
box_threshold = gr.Slider(
|
||
|
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
||
|
)
|
||
|
text_threshold = gr.Slider(
|
||
|
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
||
|
)
|
||
|
|
||
|
with gr.Column():
|
||
|
gallery = gr.outputs.Image(
|
||
|
type="pil",
|
||
|
# label="grounding results"
|
||
|
).style(full_width=True, full_height=True)
|
||
|
# gallery = gr.Gallery(label="Generated images", show_label=False).style(
|
||
|
# grid=[1], height="auto", container=True, full_width=True, full_height=True)
|
||
|
|
||
|
run_button.click(fn=run_grounding, inputs=[
|
||
|
input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery])
|
||
|
|
||
|
block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share)
|
||
|
|