|
|
|
import argparse
|
|
|
|
import json
|
|
|
|
import warnings
|
|
|
|
from collections import OrderedDict
|
|
|
|
from copy import deepcopy
|
|
|
|
from typing import Any, Dict, List
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
from groundingdino.util.slconfig import SLConfig
|
|
|
|
|
|
|
|
|
|
|
|
def slprint(x, name="x"):
|
|
|
|
if isinstance(x, (torch.Tensor, np.ndarray)):
|
|
|
|
print(f"{name}.shape:", x.shape)
|
|
|
|
elif isinstance(x, (tuple, list)):
|
|
|
|
print("type x:", type(x))
|
|
|
|
for i in range(min(10, len(x))):
|
|
|
|
slprint(x[i], f"{name}[{i}]")
|
|
|
|
elif isinstance(x, dict):
|
|
|
|
for k, v in x.items():
|
|
|
|
slprint(v, f"{name}[{k}]")
|
|
|
|
else:
|
|
|
|
print(f"{name}.type:", type(x))
|
|
|
|
|
|
|
|
|
|
|
|
def clean_state_dict(state_dict):
|
|
|
|
new_state_dict = OrderedDict()
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
if k[:7] == "module.":
|
|
|
|
k = k[7:] # remove `module.`
|
|
|
|
new_state_dict[k] = v
|
|
|
|
return new_state_dict
|
|
|
|
|
|
|
|
|
|
|
|
def renorm(
|
|
|
|
img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
|
|
|
) -> torch.FloatTensor:
|
|
|
|
# img: tensor(3,H,W) or tensor(B,3,H,W)
|
|
|
|
# return: same as img
|
|
|
|
assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
|
|
|
|
if img.dim() == 3:
|
|
|
|
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
|
|
|
|
img.size(0),
|
|
|
|
str(img.size()),
|
|
|
|
)
|
|
|
|
img_perm = img.permute(1, 2, 0)
|
|
|
|
mean = torch.Tensor(mean)
|
|
|
|
std = torch.Tensor(std)
|
|
|
|
img_res = img_perm * std + mean
|
|
|
|
return img_res.permute(2, 0, 1)
|
|
|
|
else: # img.dim() == 4
|
|
|
|
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
|
|
|
|
img.size(1),
|
|
|
|
str(img.size()),
|
|
|
|
)
|
|
|
|
img_perm = img.permute(0, 2, 3, 1)
|
|
|
|
mean = torch.Tensor(mean)
|
|
|
|
std = torch.Tensor(std)
|
|
|
|
img_res = img_perm * std + mean
|
|
|
|
return img_res.permute(0, 3, 1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
class CocoClassMapper:
|
|
|
|
def __init__(self) -> None:
|
|
|
|
self.category_map_str = {
|
|
|
|
"1": 1,
|
|
|
|
"2": 2,
|
|
|
|
"3": 3,
|
|
|
|
"4": 4,
|
|
|
|
"5": 5,
|
|
|
|
"6": 6,
|
|
|
|
"7": 7,
|
|
|
|
"8": 8,
|
|
|
|
"9": 9,
|
|
|
|
"10": 10,
|
|
|
|
"11": 11,
|
|
|
|
"13": 12,
|
|
|
|
"14": 13,
|
|
|
|
"15": 14,
|
|
|
|
"16": 15,
|
|
|
|
"17": 16,
|
|
|
|
"18": 17,
|
|
|
|
"19": 18,
|
|
|
|
"20": 19,
|
|
|
|
"21": 20,
|
|
|
|
"22": 21,
|
|
|
|
"23": 22,
|
|
|
|
"24": 23,
|
|
|
|
"25": 24,
|
|
|
|
"27": 25,
|
|
|
|
"28": 26,
|
|
|
|
"31": 27,
|
|
|
|
"32": 28,
|
|
|
|
"33": 29,
|
|
|
|
"34": 30,
|
|
|
|
"35": 31,
|
|
|
|
"36": 32,
|
|
|
|
"37": 33,
|
|
|
|
"38": 34,
|
|
|
|
"39": 35,
|
|
|
|
"40": 36,
|
|
|
|
"41": 37,
|
|
|
|
"42": 38,
|
|
|
|
"43": 39,
|
|
|
|
"44": 40,
|
|
|
|
"46": 41,
|
|
|
|
"47": 42,
|
|
|
|
"48": 43,
|
|
|
|
"49": 44,
|
|
|
|
"50": 45,
|
|
|
|
"51": 46,
|
|
|
|
"52": 47,
|
|
|
|
"53": 48,
|
|
|
|
"54": 49,
|
|
|
|
"55": 50,
|
|
|
|
"56": 51,
|
|
|
|
"57": 52,
|
|
|
|
"58": 53,
|
|
|
|
"59": 54,
|
|
|
|
"60": 55,
|
|
|
|
"61": 56,
|
|
|
|
"62": 57,
|
|
|
|
"63": 58,
|
|
|
|
"64": 59,
|
|
|
|
"65": 60,
|
|
|
|
"67": 61,
|
|
|
|
"70": 62,
|
|
|
|
"72": 63,
|
|
|
|
"73": 64,
|
|
|
|
"74": 65,
|
|
|
|
"75": 66,
|
|
|
|
"76": 67,
|
|
|
|
"77": 68,
|
|
|
|
"78": 69,
|
|
|
|
"79": 70,
|
|
|
|
"80": 71,
|
|
|
|
"81": 72,
|
|
|
|
"82": 73,
|
|
|
|
"84": 74,
|
|
|
|
"85": 75,
|
|
|
|
"86": 76,
|
|
|
|
"87": 77,
|
|
|
|
"88": 78,
|
|
|
|
"89": 79,
|
|
|
|
"90": 80,
|
|
|
|
}
|
|
|
|
self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()}
|
|
|
|
self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()}
|
|
|
|
|
|
|
|
def origin2compact(self, idx):
|
|
|
|
return self.origin2compact_mapper[int(idx)]
|
|
|
|
|
|
|
|
def compact2origin(self, idx):
|
|
|
|
return self.compact2origin_mapper[int(idx)]
|
|
|
|
|
|
|
|
|
|
|
|
def to_device(item, device):
|
|
|
|
if isinstance(item, torch.Tensor):
|
|
|
|
return item.to(device)
|
|
|
|
elif isinstance(item, list):
|
|
|
|
return [to_device(i, device) for i in item]
|
|
|
|
elif isinstance(item, dict):
|
|
|
|
return {k: to_device(v, device) for k, v in item.items()}
|
|
|
|
else:
|
|
|
|
raise NotImplementedError(
|
|
|
|
"Call Shilong if you use other containers! type: {}".format(type(item))
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
def get_gaussian_mean(x, axis, other_axis, softmax=True):
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (float): Input images(BxCxHxW)
|
|
|
|
axis (int): The index for weighted mean
|
|
|
|
other_axis (int): The other index
|
|
|
|
|
|
|
|
Returns: weighted index for axis, BxC
|
|
|
|
|
|
|
|
"""
|
|
|
|
mat2line = torch.sum(x, axis=other_axis)
|
|
|
|
# mat2line = mat2line / mat2line.mean() * 10
|
|
|
|
if softmax:
|
|
|
|
u = torch.softmax(mat2line, axis=2)
|
|
|
|
else:
|
|
|
|
u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6)
|
|
|
|
size = x.shape[axis]
|
|
|
|
ind = torch.linspace(0, 1, size).to(x.device)
|
|
|
|
batch = x.shape[0]
|
|
|
|
channel = x.shape[1]
|
|
|
|
index = ind.repeat([batch, channel, 1])
|
|
|
|
mean_position = torch.sum(index * u, dim=2)
|
|
|
|
return mean_position
|
|
|
|
|
|
|
|
|
|
|
|
def get_expected_points_from_map(hm, softmax=True):
|
|
|
|
"""get_gaussian_map_from_points
|
|
|
|
B,C,H,W -> B,N,2 float(0, 1) float(0, 1)
|
|
|
|
softargmax function
|
|
|
|
|
|
|
|
Args:
|
|
|
|
hm (float): Input images(BxCxHxW)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
weighted index for axis, BxCx2. float between 0 and 1.
|
|
|
|
|
|
|
|
"""
|
|
|
|
# hm = 10*hm
|
|
|
|
B, C, H, W = hm.shape
|
|
|
|
y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C
|
|
|
|
x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C
|
|
|
|
# return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2)
|
|
|
|
return torch.stack([x_mean, y_mean], dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
# Positional encoding (section 5.1)
|
|
|
|
# borrow from nerf
|
|
|
|
class Embedder:
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
self.kwargs = kwargs
|
|
|
|
self.create_embedding_fn()
|
|
|
|
|
|
|
|
def create_embedding_fn(self):
|
|
|
|
embed_fns = []
|
|
|
|
d = self.kwargs["input_dims"]
|
|
|
|
out_dim = 0
|
|
|
|
if self.kwargs["include_input"]:
|
|
|
|
embed_fns.append(lambda x: x)
|
|
|
|
out_dim += d
|
|
|
|
|
|
|
|
max_freq = self.kwargs["max_freq_log2"]
|
|
|
|
N_freqs = self.kwargs["num_freqs"]
|
|
|
|
|
|
|
|
if self.kwargs["log_sampling"]:
|
|
|
|
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs)
|
|
|
|
else:
|
|
|
|
freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs)
|
|
|
|
|
|
|
|
for freq in freq_bands:
|
|
|
|
for p_fn in self.kwargs["periodic_fns"]:
|
|
|
|
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
|
|
|
|
out_dim += d
|
|
|
|
|
|
|
|
self.embed_fns = embed_fns
|
|
|
|
self.out_dim = out_dim
|
|
|
|
|
|
|
|
def embed(self, inputs):
|
|
|
|
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
|
|
|
|
|
|
|
|
|
|
|
|
def get_embedder(multires, i=0):
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
if i == -1:
|
|
|
|
return nn.Identity(), 3
|
|
|
|
|
|
|
|
embed_kwargs = {
|
|
|
|
"include_input": True,
|
|
|
|
"input_dims": 3,
|
|
|
|
"max_freq_log2": multires - 1,
|
|
|
|
"num_freqs": multires,
|
|
|
|
"log_sampling": True,
|
|
|
|
"periodic_fns": [torch.sin, torch.cos],
|
|
|
|
}
|
|
|
|
|
|
|
|
embedder_obj = Embedder(**embed_kwargs)
|
|
|
|
embed = lambda x, eo=embedder_obj: eo.embed(x)
|
|
|
|
return embed, embedder_obj.out_dim
|
|
|
|
|
|
|
|
|
|
|
|
class APOPMeter:
|
|
|
|
def __init__(self) -> None:
|
|
|
|
self.tp = 0
|
|
|
|
self.fp = 0
|
|
|
|
self.tn = 0
|
|
|
|
self.fn = 0
|
|
|
|
|
|
|
|
def update(self, pred, gt):
|
|
|
|
"""
|
|
|
|
Input:
|
|
|
|
pred, gt: Tensor()
|
|
|
|
"""
|
|
|
|
assert pred.shape == gt.shape
|
|
|
|
self.tp += torch.logical_and(pred == 1, gt == 1).sum().item()
|
|
|
|
self.fp += torch.logical_and(pred == 1, gt == 0).sum().item()
|
|
|
|
self.tn += torch.logical_and(pred == 0, gt == 0).sum().item()
|
|
|
|
self.tn += torch.logical_and(pred == 1, gt == 0).sum().item()
|
|
|
|
|
|
|
|
def update_cm(self, tp, fp, tn, fn):
|
|
|
|
self.tp += tp
|
|
|
|
self.fp += fp
|
|
|
|
self.tn += tn
|
|
|
|
self.tn += fn
|
|
|
|
|
|
|
|
|
|
|
|
def inverse_sigmoid(x, eps=1e-5):
|
|
|
|
x = x.clamp(min=0, max=1)
|
|
|
|
x1 = x.clamp(min=eps)
|
|
|
|
x2 = (1 - x).clamp(min=eps)
|
|
|
|
return torch.log(x1 / x2)
|
|
|
|
|
|
|
|
|
|
|
|
def get_raw_dict(args):
|
|
|
|
"""
|
|
|
|
return the dicf contained in args.
|
|
|
|
|
|
|
|
e.g:
|
|
|
|
>>> with open(path, 'w') as f:
|
|
|
|
json.dump(get_raw_dict(args), f, indent=2)
|
|
|
|
"""
|
|
|
|
if isinstance(args, argparse.Namespace):
|
|
|
|
return vars(args)
|
|
|
|
elif isinstance(args, dict):
|
|
|
|
return args
|
|
|
|
elif isinstance(args, SLConfig):
|
|
|
|
return args._cfg_dict
|
|
|
|
else:
|
|
|
|
raise NotImplementedError("Unknown type {}".format(type(args)))
|
|
|
|
|
|
|
|
|
|
|
|
def stat_tensors(tensor):
|
|
|
|
assert tensor.dim() == 1
|
|
|
|
tensor_sm = tensor.softmax(0)
|
|
|
|
entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum()
|
|
|
|
|
|
|
|
return {
|
|
|
|
"max": tensor.max(),
|
|
|
|
"min": tensor.min(),
|
|
|
|
"mean": tensor.mean(),
|
|
|
|
"var": tensor.var(),
|
|
|
|
"std": tensor.var() ** 0.5,
|
|
|
|
"entropy": entropy,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class NiceRepr:
|
|
|
|
"""Inherit from this class and define ``__nice__`` to "nicely" print your
|
|
|
|
objects.
|
|
|
|
|
|
|
|
Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function
|
|
|
|
Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``.
|
|
|
|
If the inheriting class has a ``__len__``, method then the default
|
|
|
|
``__nice__`` method will return its length.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> class Foo(NiceRepr):
|
|
|
|
... def __nice__(self):
|
|
|
|
... return 'info'
|
|
|
|
>>> foo = Foo()
|
|
|
|
>>> assert str(foo) == '<Foo(info)>'
|
|
|
|
>>> assert repr(foo).startswith('<Foo(info) at ')
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> class Bar(NiceRepr):
|
|
|
|
... pass
|
|
|
|
>>> bar = Bar()
|
|
|
|
>>> import pytest
|
|
|
|
>>> with pytest.warns(None) as record:
|
|
|
|
>>> assert 'object at' in str(bar)
|
|
|
|
>>> assert 'object at' in repr(bar)
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> class Baz(NiceRepr):
|
|
|
|
... def __len__(self):
|
|
|
|
... return 5
|
|
|
|
>>> baz = Baz()
|
|
|
|
>>> assert str(baz) == '<Baz(5)>'
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __nice__(self):
|
|
|
|
"""str: a "nice" summary string describing this module"""
|
|
|
|
if hasattr(self, "__len__"):
|
|
|
|
# It is a common pattern for objects to use __len__ in __nice__
|
|
|
|
# As a convenience we define a default __nice__ for these objects
|
|
|
|
return str(len(self))
|
|
|
|
else:
|
|
|
|
# In all other cases force the subclass to overload __nice__
|
|
|
|
raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}")
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
"""str: the string of the module"""
|
|
|
|
try:
|
|
|
|
nice = self.__nice__()
|
|
|
|
classname = self.__class__.__name__
|
|
|
|
return f"<{classname}({nice}) at {hex(id(self))}>"
|
|
|
|
except NotImplementedError as ex:
|
|
|
|
warnings.warn(str(ex), category=RuntimeWarning)
|
|
|
|
return object.__repr__(self)
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
"""str: the string of the module"""
|
|
|
|
try:
|
|
|
|
classname = self.__class__.__name__
|
|
|
|
nice = self.__nice__()
|
|
|
|
return f"<{classname}({nice})>"
|
|
|
|
except NotImplementedError as ex:
|
|
|
|
warnings.warn(str(ex), category=RuntimeWarning)
|
|
|
|
return object.__repr__(self)
|
|
|
|
|
|
|
|
|
|
|
|
def ensure_rng(rng=None):
|
|
|
|
"""Coerces input into a random number generator.
|
|
|
|
|
|
|
|
If the input is None, then a global random state is returned.
|
|
|
|
|
|
|
|
If the input is a numeric value, then that is used as a seed to construct a
|
|
|
|
random state. Otherwise the input is returned as-is.
|
|
|
|
|
|
|
|
Adapted from [1]_.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
rng (int | numpy.random.RandomState | None):
|
|
|
|
if None, then defaults to the global rng. Otherwise this can be an
|
|
|
|
integer or a RandomState class
|
|
|
|
Returns:
|
|
|
|
(numpy.random.RandomState) : rng -
|
|
|
|
a numpy random number generator
|
|
|
|
|
|
|
|
References:
|
|
|
|
.. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501
|
|
|
|
"""
|
|
|
|
|
|
|
|
if rng is None:
|
|
|
|
rng = np.random.mtrand._rand
|
|
|
|
elif isinstance(rng, int):
|
|
|
|
rng = np.random.RandomState(rng)
|
|
|
|
else:
|
|
|
|
rng = rng
|
|
|
|
return rng
|
|
|
|
|
|
|
|
|
|
|
|
def random_boxes(num=1, scale=1, rng=None):
|
|
|
|
"""Simple version of ``kwimage.Boxes.random``
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: shape (n, 4) in x1, y1, x2, y2 format.
|
|
|
|
|
|
|
|
References:
|
|
|
|
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
|
|
|
|
|
|
|
|
Example:
|
|
|
|
>>> num = 3
|
|
|
|
>>> scale = 512
|
|
|
|
>>> rng = 0
|
|
|
|
>>> boxes = random_boxes(num, scale, rng)
|
|
|
|
>>> print(boxes)
|
|
|
|
tensor([[280.9925, 278.9802, 308.6148, 366.1769],
|
|
|
|
[216.9113, 330.6978, 224.0446, 456.5878],
|
|
|
|
[405.3632, 196.3221, 493.3953, 270.7942]])
|
|
|
|
"""
|
|
|
|
rng = ensure_rng(rng)
|
|
|
|
|
|
|
|
tlbr = rng.rand(num, 4).astype(np.float32)
|
|
|
|
|
|
|
|
tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
|
|
|
|
tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
|
|
|
|
br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
|
|
|
|
br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
|
|
|
|
|
|
|
|
tlbr[:, 0] = tl_x * scale
|
|
|
|
tlbr[:, 1] = tl_y * scale
|
|
|
|
tlbr[:, 2] = br_x * scale
|
|
|
|
tlbr[:, 3] = br_y * scale
|
|
|
|
|
|
|
|
boxes = torch.from_numpy(tlbr)
|
|
|
|
return boxes
|
|
|
|
|
|
|
|
|
|
|
|
class ModelEma(torch.nn.Module):
|
|
|
|
def __init__(self, model, decay=0.9997, device=None):
|
|
|
|
super(ModelEma, self).__init__()
|
|
|
|
# make a copy of the model for accumulating moving average of weights
|
|
|
|
self.module = deepcopy(model)
|
|
|
|
self.module.eval()
|
|
|
|
|
|
|
|
# import ipdb; ipdb.set_trace()
|
|
|
|
|
|
|
|
self.decay = decay
|
|
|
|
self.device = device # perform ema on different device from model if set
|
|
|
|
if self.device is not None:
|
|
|
|
self.module.to(device=device)
|
|
|
|
|
|
|
|
def _update(self, model, update_fn):
|
|
|
|
with torch.no_grad():
|
|
|
|
for ema_v, model_v in zip(
|
|
|
|
self.module.state_dict().values(), model.state_dict().values()
|
|
|
|
):
|
|
|
|
if self.device is not None:
|
|
|
|
model_v = model_v.to(device=self.device)
|
|
|
|
ema_v.copy_(update_fn(ema_v, model_v))
|
|
|
|
|
|
|
|
def update(self, model):
|
|
|
|
self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m)
|
|
|
|
|
|
|
|
def set(self, model):
|
|
|
|
self._update(model, update_fn=lambda e, m: m)
|
|
|
|
|
|
|
|
|
|
|
|
class BestMetricSingle:
|
|
|
|
def __init__(self, init_res=0.0, better="large") -> None:
|
|
|
|
self.init_res = init_res
|
|
|
|
self.best_res = init_res
|
|
|
|
self.best_ep = -1
|
|
|
|
|
|
|
|
self.better = better
|
|
|
|
assert better in ["large", "small"]
|
|
|
|
|
|
|
|
def isbetter(self, new_res, old_res):
|
|
|
|
if self.better == "large":
|
|
|
|
return new_res > old_res
|
|
|
|
if self.better == "small":
|
|
|
|
return new_res < old_res
|
|
|
|
|
|
|
|
def update(self, new_res, ep):
|
|
|
|
if self.isbetter(new_res, self.best_res):
|
|
|
|
self.best_res = new_res
|
|
|
|
self.best_ep = ep
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def __str__(self) -> str:
|
|
|
|
return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep)
|
|
|
|
|
|
|
|
def __repr__(self) -> str:
|
|
|
|
return self.__str__()
|
|
|
|
|
|
|
|
def summary(self) -> dict:
|
|
|
|
return {
|
|
|
|
"best_res": self.best_res,
|
|
|
|
"best_ep": self.best_ep,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class BestMetricHolder:
|
|
|
|
def __init__(self, init_res=0.0, better="large", use_ema=False) -> None:
|
|
|
|
self.best_all = BestMetricSingle(init_res, better)
|
|
|
|
self.use_ema = use_ema
|
|
|
|
if use_ema:
|
|
|
|
self.best_ema = BestMetricSingle(init_res, better)
|
|
|
|
self.best_regular = BestMetricSingle(init_res, better)
|
|
|
|
|
|
|
|
def update(self, new_res, epoch, is_ema=False):
|
|
|
|
"""
|
|
|
|
return if the results is the best.
|
|
|
|
"""
|
|
|
|
if not self.use_ema:
|
|
|
|
return self.best_all.update(new_res, epoch)
|
|
|
|
else:
|
|
|
|
if is_ema:
|
|
|
|
self.best_ema.update(new_res, epoch)
|
|
|
|
return self.best_all.update(new_res, epoch)
|
|
|
|
else:
|
|
|
|
self.best_regular.update(new_res, epoch)
|
|
|
|
return self.best_all.update(new_res, epoch)
|
|
|
|
|
|
|
|
def summary(self):
|
|
|
|
if not self.use_ema:
|
|
|
|
return self.best_all.summary()
|
|
|
|
|
|
|
|
res = {}
|
|
|
|
res.update({f"all_{k}": v for k, v in self.best_all.summary().items()})
|
|
|
|
res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()})
|
|
|
|
res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()})
|
|
|
|
return res
|
|
|
|
|
|
|
|
def __repr__(self) -> str:
|
|
|
|
return json.dumps(self.summary(), indent=2)
|
|
|
|
|
|
|
|
def __str__(self) -> str:
|
|
|
|
return self.__repr__()
|
|
|
|
|
|
|
|
|
|
|
|
def targets_to(targets: List[Dict[str, Any]], device):
|
|
|
|
"""Moves the target dicts to the given device."""
|
|
|
|
excluded_keys = [
|
|
|
|
"questionId",
|
|
|
|
"tokens_positive",
|
|
|
|
"strings_positive",
|
|
|
|
"tokens",
|
|
|
|
"dataset_name",
|
|
|
|
"sentence_id",
|
|
|
|
"original_img_id",
|
|
|
|
"nb_eval",
|
|
|
|
"task_id",
|
|
|
|
"original_id",
|
|
|
|
"token_span",
|
|
|
|
"caption",
|
|
|
|
"dataset_type",
|
|
|
|
]
|
|
|
|
return [
|
|
|
|
{k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def get_phrases_from_posmap(
|
|
|
|
posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer
|
|
|
|
):
|
|
|
|
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
|
|
|
|
if posmap.dim() == 1:
|
|
|
|
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
|
|
|
|
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
|
|
|
|
return tokenizer.decode(token_ids)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError("posmap must be 1-dim")
|